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A B S T R A C T

The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery requires accurate atmospheric com­ 

pensation to correctly disentangle its small contribution to the at-sensor radiance from other confounding factors. 

In spectral fitting SIF retrieval approaches this compensation is estimated in a joint optimization of free variables 

when fitting the measured at-sensor signal. Due to the computational complexity of Radiative Transfer Models 

(RTMs) that satisfy the level of precision required for accurate SIF retrieval, fully joint estimations are practi­ 

cally unachievable with exact physical simulation. We present in this contribution an emulator-based spectral 

fitting method neural network (EmSFMNN) approach integrating RTM emulation and self-supervised training for 

computationally efficient and accurate SIF retrieval in the O 2 

-A absorption band of HyPlant imagery. In a valida­ 

tion study with in-situ top-of-canopy SIF measurements we find improved performance over traditional retrieval 

methods. Furthermore, we show that the model predicts plausible SIF emission in topographically variable ter­ 

rain without scene-specific adaptations. Since EmSFMNN can be adapted to hyperspectral imaging sensors in a 

straightforward fashion, it may prove to be an interesting SIF retrieval method for other sensors on airborne and 

spaceborne platforms.

1 . Introduction

Any application based on hyperspectral imagery of the earth’s sur­ 

face acquired from remote platforms must consider the influence of 

the atmosphere at acquisition time. The atmospheric state has a con­ 

founding influence on the measured at-sensor radiance. In order to 

disentangle atmospheric effects from any physical surface variable a firm 

understanding of the physical signal generation is necessary. Various 

atmospheric radiative transfer models (RTMs) have been developed 

(e.g. MODTRAN6 Berk et al., 2014, 6S/6SV Kotchenova et al., 2006, 

2007, libRadTran Emde et al., 2016) to derive appropriate correction 

algorithms for these effects. In vegetation-related remote sensing it 

is crucial to couple such atmospheric models with leaf and soil opti­ 

cal properties, leaf-level energy fluxes (Jacquemoud et al., 1990; Feret 

et al., 2008; Tol et al., 2009a,b), and radiative transfer models in the 

canopy (Jacquemoud et al., 2009; Gastellu-Etchegorry et al., 2015) to 

enable accurate retrieval of biophysical parameters from remote sensing 

reflectances.

Similarly, the retrieval of sun-induced fluorescence (SIF) from hy­ 

perspectral imagery in atmospheric absorption bands relies heavily on 

∗ Corresponding author at: Forschungszentrum Jülich GmbH, Institute of Advanced Simulation, IAS-8: Data Analytics and Machine Learning, Jülich, Germany.

 Email address: j.buffat@fz-juelich.de (J. Buffat).

https://doi.org/10.1016/j.rse.2025.115203 

Received 24 February 2025; Received in revised form 22 November 2025; Accepted 12 December 2025

Remote Sensing of Environment 334 (2026) 115203 

Available online 25 December 2025 
0034-4257/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

http://www.sciencedirect.com/science/journal/0034-4257
https://www.elsevier.com/locate/RSE
https://orcid.org/0009-0006-8688-0580
https://orcid.org/0000-0003-0111-0861
https://orcid.org/0000-0003-2469-8290
https://orcid.org/0000-0001-6693-1973
https://orcid.org/0000-0002-9993-4588
mailto:j.buffat@fz-juelich.de
https://doi.org/10.1016/j.rse.2025.115203
https://doi.org/10.1016/j.rse.2025.115203
http://creativecommons.org/licenses/by/4.0/


J. Buffat, M. Pato, K. Alonso et al.

accurate modelling of atmospheric radiative transfer and of sensor prop­ 

erties. The state of the atmosphere parameterized by its water vapour 

content, the type and density of aerosols at recording time as well as the 

pressure and temperature profiles along the optical path modulates the 

radiance signal from which SIF is retrieved (Pato et al., 2025; Daumard 

et al., 2015; Cogliati et al., 2015; Sabater et al., 2018). Since in typical 

airborne acquisition scenarios for SIF retrieval no atmospheric measure­ 

ments are recorded, atmospheric variables are usually estimated using 

RTMs in iterative processes. However, RTMs often cannot be used di­ 

rectly in radiance-based estimation due to their computational cost. To 

reduce the retrieval dependency and the number of RTM simulations re­ 

quired to retrieve SIF from at-sensor radiance, a two-step procedure is 

assumed in various SIF retrieval methods as opposed to a joint estimation 

of surface, atmospheric and sensor related parameters.

In a first step, the atmosphere is characterized for a set of pixels 

to derive the atmospheric transmittance with the help of an RTM. In a 

second step, these transmittance estimates are used to disentangle re­ 

flectance, fluorescence and possibly sensor miscalibrations commonly 

parameterized in center wavelength (CW) and full width at half maxi­ 

mum (FWHM) shifts. For example, (Cogliati et al., 2019; Wieneke et al., 

2016) derive a set of atmospheric transfer functions for single acquisi­ 

tions using an RTM ‘interrogation’ technique first introduced by Verhoef 

and Bach (2003). Operationally, these estimated transfer functions are 

finetuned to account for retrieval errors of atmospheric components due 

to sensor noise, sensor miscalibration and model inaccuracies by mod­ 

ifications of a procedure called transmittance correction (Guanter et al., 

2010; Damm et al., 2014). This type of finetuning of the atmospheric 

transfer functions is based on the presence of non-vegetated pixels that 

are not affected by fluorescence. The identification of non-vegetated soil 

pixels can be difficult, however, in many geographical areas and espe­ 

cially in observation setups resulting in pixel sizes larger than a few 

meters where pure pixels are rare.

The validity of constant atmospheric transfer across a large set of 

spatial pixels relies on auto-correlation distances of atmospheric fac­ 

tors in airborne imagery being usually larger than the spatial extent 

of the prediction (Anderson et al., 2003; Thompson et al., 2021). This 

usually results in the use of a single RTM estimate per acquisition. In 

the case of spaceborne acquisitions with much larger spatial footprints, 

as will be provided for example by the FLEX mission (Drusch et al., 

2017), this assumption is not satisfied and strategies to localize the atmo­ 

spheric characterizations efficiently must be developed. In the context of 

atmospheric correction for accurate reflectance estimation (Thompson 

et al., 2022) have for example recently demonstrated the use of local 

linear emulators for accurate and computationally efficient atmospheric 

correction.

Similarly to changing atmospheric conditions on spatial scales rel­ 

evant to satellite observations, the strongly changing observational 

conditions in airborne observations of topographically variable terrain 

are a challenge for SIF retrieval algorithms based on spectral regions 

affected by O 2 

 absorption. The simplifying assumption of constant atmo­ 

spheric transmittance is invalid in these cases since the resulting optical 

path differences cause large variance in the depth of these absorption 

features.

Buffat et al. (2025a) have proposed a pathway to computationally 

efficient SIF retrieval in these conditions by introducing the Spectral 

Fitting Method Neural Network (SFMNN). A reconstruction based on 

a Principal Component Analysis (PCA) of atmospheric transfer func­ 

tions is used to model the radiative transfer nonparametrically in this 

approach. This allows for localized radiative transfer estimations and, 

importantly, a joint retrieval of the transfer functions as well as sur­ 

face and sensor related quantities. However, the PCA loadings are fitted 

non-parametrically since they are not formulated as functions of phys­ 

ical quantities (e.g., surface and sensor altitude, water vapour content, 

aerosol optical density) as would be the case with physically explicit 

RTM simulations. This (i) impedes the explanatory power of atmospheric 

estimates and (ii) does not allow for constraining the atmospheric 

estimates with known physical quantities.

In this work, we propose the use of RTM emulation instead of the 

PCA-based radiative transfer formulation adopted in SFMNN to increase 

its physical accuracy in HyPlant FLUO data. Such an emulator-based 

SFMNN (EmSFMNN) approach has recently been validated for space­ 

borne DESIS data (Buffat et al., 2025b) in conjunction with a loss 

formulation similar to the original SFMNN approach (Buffat et al., 

2025a). The authors find good agreement between their DESIS derived 

SIF estimates and HyPlant-based SIF estimates in a benchmark dataset 

consisting of quasi-simultaneously recorded HyPlant and DESIS acquisi­ 

tions. The results of this study highlight the potential of the SFMNN 

approach for hyperspectral sensors with improved spectral sampling 

such as HyPlant FLUO and the FLORIS sensor onboard the ESA’s Earth 

Explorer Mission FLEX (Drusch et al., 2017).

RTM emulation can be regarded as a computationally efficient ap­ 

proximation of the exact simulation by a function acting on the same 

input parameter space as its RTM counterpart (Servera et al., 2022). The 

functional form of such emulators is not relevant a priori, but depends on 

the application specifications such as the required computational speed, 

the reconstruction performance, the spectral range and the input pa­ 

rameter dimensionality. In this contribution, we derive a polynomial 

emulator from a large simulation database replicating typical observa­ 

tional conditions and the sensor characterization of the hyperspectral 

imaging sensor system HyPlant based on prior analysis published in 

(Pato et al., 2025, 2024, 2023). In this contribution, we show that ex­ 

tending this emulator to represent bandwise spectral miscalibration is 

integral for accurate SIF retrieval in HyPlant data. The functional form 

of the proposed extension matches well with the specific requirements of 

neural network training. The computational efficiency of its predictions 

and gradient computation is sufficient for training on large hyperspec­ 

tral databases. With this novel neural network approach to integrate a 

computationally efficient model of canopy level optical properties and 

atmospheric radiative transfer into a SIF retrieval scheme, we are able 

for the first time to make use of a pixelwise geometrical parametrization 

for a joint estimation of SIF and reflectance in airborne SIF retrieval.

In this study, we focus on SIF retrieval of selected campaign data 

sets of the hyperspectral HyPlant sensor system (Siegmann et al., 2019; 

Buffat et al., 2024a). The sensor characteristics of HyPlant and the size 

of HyPlant data sets are uniquely suited to develop and improve partly 

data-driven SIF retrieval algorithms such as ours. Since HyPlant data is 

often acquired during field campaigns featuring ground based SIF mea­ 

surements, we are able to complement the present study with a direct 

comparison of SIF estimates of our approach with ground-based in-situ 

SIF estimates. However, we point out that while HyPlant is well suited 

to test the setup presented in this work, EmSFMNN may be applied to 

data acquired by other airborne or spaceborne sensors. Its specific for­ 

mulation is in fact well suited to cope with large existing hyperspectral 

data sets and continuous data streams of hyperspectral imaging sensors.

2 . Data 

2.1 . Data quality provided by the HyPlant FLUO sensor

The HyPlant FLUO sensor (Siegmann et al., 2019) is the airborne 

demonstrator for the spaceborne FLEX satellite mission (Drusch et al., 

2017). As such, it has been designed specifically for SIF retrieval in 

the atmospheric O 2 

-A and O 2 

-B absorption bands with a spectral sam­ 

pling interval of 0.11 nm and a full width at half maximum (FWHM) 

of 0.25 nm. A large collection of hyperspectral HyPlant data sets have 

been collected since 2014 (European Space Agency, 2017a,b, 2018, 

2019; Siegmann et al., 2021, 2022; Rascher et al., 2022) and are 

partly openly available (Buffat et al., 2024a), (Buffat et al., 2024b). In 

particular, yearly data sets since 2018 can be considered comparable 

across different campaigns due to the standardization of the radiomet­ 

ric calibration and the geometric correction. Overall, the radiometric 
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Table 1 

Data sets of compiled HyPlant acquisitions from different locations in the years 2018–2023. Data Set denotes a 

single compilation. With Campaign we denote the campaign identifier pointing to the used acquisitions according 

to the identified scheme outlined in the openly available HyData data set (Buffat et al., 2024a), with FLOX we 

denote the availability of simultaneous FLOX data, with Δℎ the maximum topographic variation over the compiled 

data set, with GSD the physical ground sampling distance of individual pixels and with |D| the data set size in 

terms of number of 60 × 60 px image crops. We report the number of patches used for training in parenthesis.

Data Set Campaign FLOX Δℎ [m] GSD [m] |D| [×10 

3 ] Location

SEL-2018 (600 m) SEL ✓ 20 1 × 1 15 (5) Selhausen, DE

WST-2019 (1500 m) WST ✓ 20 2.3 × 2.3 14 (5) Braccagni, IT

CKA-2020 (600 m) CKA ✓ 20 1 × 1 10 (3) Kl. Altendorf, DE

CKA-2020 (350 m) CKA ✓ 20 0.5 × 1 8 (2) Kl. Altendorf, DE

CKA-2021 (350 m) CKA ✓ 20 0.5 × 1 4 (1) Kl. Altendorf, DE

TOPO SOP, HOE – 300 1 × 1 11 (3) Jülich, DE Hölstein, CH

600 m 

2021–2023

PRE PHY, HOE – 300 0.5–2.3 235 (38)

CKA, SEL 

WST, NRS 

SOP, TR32 

350–1800 m 

2018–2023

Fig. 1. Geometrical set-up of the sun-observer geometry definitions in use. RAA 

denotes the relative azimuth angle, TA the tilt angle and SZA the sun zenith 

angle.

calibration achieves a mean relative uncertainty 𝑟 𝑔 

 of 3 % (Rascher et al., 

2022) and the geolocalization subpixel accuracy (Siegmann et al., 2019).

In this study, we make use of radiometrically corrected HyPlant 

FLUO acquisitions obtained during the years 2018−2023 (cf. Table 1) in 

different flight campaigns, various locations and varying sun–observer 

geometries. The dataset incorporates a large portion of all available 

HyPlant FLUO acquisitions from this time period. We notably include 

acquisitions with strong topographic variation to train and to test the re­ 

trieval performance under these demanding conditions (see Section 4.3). 

2.2 . Simulation of HyPlant at-sensor radiance

The emulator utilized in this work is based on the polynomial emu­ 

lator described in (Pato et al., 2024, 2023) derived from a simulation 

tool generating single pixel at-sensor radiance (Pato et al., 2025). It 

uses MODTRAN6 to model radiative transfer through the atmosphere 

at 0.1 cm 

−1 . Simple parametric models are assumed for surface re­ 

flectance and fluorescence emission in the spectral range around the 

Table 2 

Specification of the ranges of all physical variables 

necessary for the parameterization of the simula­ 

tion tool. H 2 

O denotes vertical water vapour content, 

AOT 550 

 the aerosol optical thickness at 550 nm, TA 

the sensor’s viewing angle, SZA the solar zenith an­ 

gle, RAA the relative azimuth angle, ℎ gnd 

 the ground 

altitude above sea level, ℎ agl 

 the sensor height above 

ground level. 𝜌 740 

, 𝑠 and 𝑒 denote bias, slope and cur­ 

vature of the reflectance according to the reflectance 

model definition given in (Pato et al., 2025, 2024), 

𝐹  is the fluorescence amplitude at 737 nm (737  

∗ : 𝐹  is 737
given in units of [mW/nm/sr/m2 

 ]). Δ𝜆 and Δ𝜎 denote 

wavelength and sensor resolution shifts.

Specification Range

Atmosphere H 2 

O [cm] 0.3−3.0

AOT 550 [] 0.02−0.30

Geometry TA [ 

◦ ] 0−25

SZA [ 

◦ ] 20−55

RAA [ 

◦ ] 0−180

ℎ gnd 

 [km] 0−0.760

ℎ agl 

 [km] 0.2−2.86

Surface 𝜌740  [] 0.05−0.60

𝑠 [nm−1 

 ] 0−0.012

𝑒 [] 0−1

𝐹737  [ 

∗ ] 0−8

Sensor Δ𝜆 [nm] [−0.080, +0.080]
Δ𝜎 [nm] [−0.040, +0.040] 

Input dimensions 13 

Number of bands 349 

Number of samples 6.3 × 10 

6

O 2 

-A oxygen absorption band. The parameters of the simulator have 

been chosen according to an extensive sensitivity study performed in 

(Pato et al., 2025). We fixed the ranges of the resulting 13 parameters 

(see Table 2) to cover the empirical distributions found in the HyPlant 

acquisitions used in this work. Appropriate ranges for the geometric 

parameters sensor altitude above ground level ℎ agl 

, ground altitude ℎ gnd 

, 

relative azimuth angle (RAA) and tilt angle TA could be established ex­ 

actly from metadata provided with HyPlant data (cmp. Fig. 1). The 

ranges for the surface parameters and for the sensor characterization 

were also adopted directly from preparatory work in (Pato et al., 2024, 
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2023). The parametrization of a simple quadratic reflectance model im­ 

plemented in the simulation tool was adopted according to an analysis 

of vegetation and soil reflectance spectra of the DUAL hemispherical-

directional reflectance product that is computed operationally for all 

HyPlant acquisitions. Equally, we simulated fluorescence emission in 

the O 2 

-A band according to the top-of-canopy fluorescence emission 

model adopted by Pato et al. (2025) as a Gaussian with fixed mean (𝜇 = 

737 nm), fixed standard deviation (𝜎 𝑓 = 20 nm) and a free amplitude 

𝐹 737. The ranges regarding the sensor characterization parameterized by 

center wavelength shifts Δ𝜆 and FWHM shifts Δ𝜎 were derived from in-

flight data. Due to the lack of simultaneous measurements, which would 

have allowed estimates of aerosol optical thickness AOT 550 

 and water 

vapour density H 2 

O, these ranges were chosen such that they covered 

all possible atmospheric states in which HyPlant campaigns are operated 

(cloud-free weather conditions in mid-latitude regions in summer).

We sampled the parameter ranges in Table 2 with different sampling 

strategies for the training and validation data set to derive an emulator 

as outlined in (Pato et al., 2024, 2023). Importantly, the input parame­ 

ters 𝑝 were sampled independently. Since the parametric models for the 

spectral shapes of the reflectance and fluorescence implemented in the 

simulation tool were completely independent as well, we prevented our 

retrieval method from incorporating cross-correlations between fitted 

parameters a priori. This would have undermined the purely physical 

approach followed in this work.

2.3 . In-situ SIF validation data

For a subset of the HyPlant acquisitions used in this work in-situ 

measurements of SIF are available (see Table 1). All in-situ measure­ 

ments were derived using the Improved Fraunhofer Line Discrimination 

Method (iFLD) (Alonso et al., 2008) from radiance point measure­ 

ments and solar irradiance recordings of the hyperspectral FLOX de­ 

vice (Fluorescence Box, JB-Hyperspectral Devices GmbH, Duesseldorf, 

Germany). In the case of the FLOX measurement series matching with 

CKA-2020 HyPlant acquisitions, the in-situ measurements were taken at 

four different locations by four different devices. One FLOX was placed 

in an agricultural oat field and three others in wheat fields. For the val­ 

idation, we have aggregated the time series and did not differentiate 

between the different FLOX devices. The localization of those FLOX sys­ 

tems was improved with an exact GPS RTK measurements at each of 

the devices. In the case of the in-situ measurements matching the SEL-

2018 HyPlant acquisitions, a single mobile FLOX device was used in 

agricultural fields of sugar beet and wheat.

FLOX measurements falling within five min of the acquisition time of 

HyPlant were considered. We selected only FLOX measurements flagged 

as having high radiometric stability (< 1 % difference in solar irradiance 

over the course of the measurement) in order to exclude measurements 

affected by cloud and haze. Since HyPlant campaigns are only conducted 

in optimal weather conditions, no measurements had to be excluded. In 

the case of multiple measurements within this time window matching a 

single acquisition, we averaged the FLOX iFLD SIF estimate to compare 

with HyPlant derived SIF estimates. In order to account for localization 

errors as well as the field of view, we compared HyPlant pixels within 

a fixed 2 px radius around the measurement location, resulting in ag­ 

gregation radii of 1 m, 2 m and 4.6 m for acquisitions acquired at 350, 

600 and 1500 m above ground level (compare Table 1). The temporal 

and spatial variance resulting from the time windowing and spatial lo­ 

calization buffer were used as proxies for uncertainty estimates in the 

performance calculations.

3 . Methods

In this work, we extend the Spectral Fitting Method Neural Network 

(SFMNN) setup first outlined by  (Buffat et al., 2025a) with a simulation 

and emulation framework to improve the representation of the atmo­ 

spheric radiative transfer (see flow chart in Fig. 2). SFMNN combines 

neural network training and physical radiative transfer simulation to 

estimate a decomposition of the at-sensor signal into constitutive quan­ 

tities. In a first step, the spectral data is projected to a learnable spectral 

embedding space through a spectral encoder (see Fig. 3). From this com­ 

mon embedding space, a set of decoder heads estimates various physical 

variables. During inference these variable estimates are used directly as 

method products such as, e.g., the SIF product which is the estimated flu­ 

orescence. To train this estimation, the network passes these variables 

into a fixed simulation layer representing the physical radiative transfer 

to the sensor given the estimated variables. Training, thus, consists in 

aligning the spectral input with the simulated radiance spectra based on 

the network estimates. While in SFMNN (Buffat et al., 2025a) the sim­ 

ulation layer is defined as a simplified four stream model, we propose 

in this contribution the use of a polynomial emulator approximating 

the simulations of a radiative transfer simulation tool at high inference 

speeds (see Fig. 2). In the following paragraphs we first outline the net­ 

work architecture and then describe the implementation and derivation 

of the emulator for the purpose of network training. 

3.1 . Neural network architecture

We construct a neural network acting on fixed size excerpts of 

HyPlant imagery (60 × 60 px) that we will refer to as patches. This patch 

size has not been tuned to optimize performance considerations in this 

Fig. 2. Flowchart of the proposed EmSFMNN retrieval approach. In a first step, an emulator 𝑡 is derived from a large simulation data set of HyPlant radiances in the 

O 2 

-A absorption band featuring variable surface conditions and observation geometries. The emulator 𝑡 is extended to an emulator ̃ 𝑡 supporting wavelength dependent 

sensor shifts Δ𝜆(𝜆) and Δ𝜎(𝜆) according to the procedure detailed in Appendix A. In a second step, a SFMNN (Buffat et al., 2025a) is trained with ̃ 𝑡 as simulation 

layer. This training is conducted in two steps where a backbone network 𝑚 PRE 

 is trained on a large data set of HyPlant acquisitions recorded in variable conditions. 

𝑚 PRE 

 is subsequently finetuned to individual, smaller data sets recorded under similar conditions (see Table 1), for example 𝑚 SEL 

.
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Fig. 3. Outline of the architecture and emulator integration of the SFMNN used in this work. Dimensions of the encoder 𝑒in 

 

, the decoders for variables 𝜌 740 

, 𝑠, 𝑒, 𝐹 737 

, 

AOT  and 550 H 

  

 2O and the sensor characterization 𝑔 are given in Table 3.

work, but set a priori. The network architecture is defined as a Multilayer 

Perceptron (MLP) encoder-decoder setup as in the original SFMNN for­ 

mulation (Buffat et al., 2025a) and similarly to an earlier EmSFMNN 

implementation for DESIS (Buffat et al., 2025b) (see Table 3). The net­ 

work is trained to predict all parameters 𝑝 of the RTM model in Eq. (1) 

that cannot be inferred from metadata or geometrical recordings, i.e., 

all parameters in Table 2 except parameters of the group Geometry.

The encoder 𝑒 in 

 and decoder modules 𝑑 𝑣 

 in this network are con­ 

structed as MLPs with residual links and have the dimensionalities given 

in Table 3. The decoders are tasked with disentangling the latent space 

spanned by the encoder to the physical parameters ⃗ 𝑝̃ parameterizing 

the radiative transfer model underlying the simulation tool and, thus, 

the emulator. We define two decoders 𝑑 𝑣: one for the reflectance and 

fluorescence related parameters predicted for each pixel and one for 

the atmospheric parameters predicted for each patch. These two de­ 

coder modules are implemented identically with except for a final spatial 

mean reduction before the emulator layer in the case of the patchwise 

predictor. As in SFMNN, we differentiate between pixel-wise and patch-

wise prediction based on the fact that atmospheric parameters (AOT and 

H 2 

O) have an autocorrelation that typically exceeds the physical patch 

size such that a single atmospheric estimate per patch can be assumed 

to lead to sufficiently precise approximations.

The estimation of sensor shifts ⃗ Δ𝜆 and ⃗ Δ𝜎 is implemented differently. 

We assume that we can fit these shifts as a function of the sensor state at 

acquisition time and the across-track sensor position alone without any 

spectral input. This assumption is implemented in the architecture by 

Table 3 

Dimensionalities for different modules in the EmSFMNN architecture (see 

Fig. 3). Elements in a tuple denote an architecture parameter for a single sub­ 

layer in a module. Reps. denotes the number of repetitions of linear layers in a 

sublayer, 𝐷 𝑝 denotes the dropout rate of the output of the sublayer. For a more 

detailed exposition of the module architecture we refer to (Buffat et al., 2025a).

Module Parameters

Encoder 𝑒in Dim. (2e3, 2e3, 1e3, 5e2, 5e2, 1e2, 1e2, 1e2, 50)
Reps. (3, 3, 3, 3, 3, 3, 3, 1, 1)
𝐷 𝑝 (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Decoder 𝑑𝑣 Dim. (1e2, 50, 50, 50, 10)
Reps. (3, 2, 2, 1)
𝐷 𝑝 (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Sensor charact. g Dim. (1e2, 50, 50, 50, 10)
Reps. (3, 2, 2, 1)
𝐷 𝑝 (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

estimating the sensor shifts only from an arbitrarily defined acquisition 

identifier 𝑢  ∈ R 

𝑈  that represents the sensor state and the across-track 

position 𝑥 1 

. At the start of the training we randomly instantiate these 

identifiers 𝑢 of fixed dimensionality (𝑈 = 8) for each acquisition in 

the training dataset and include them as learnable parameters in the 

optimization. The MLP module 𝑔 predicts shifts Δ⃗𝜆 and ⃗ Δ𝜎 for each 

wavelength (Λ = 349) at across-track positions 𝑥 1 

 from pixelwise con­ 

catenations of the identifier vectors 𝑢 and a positional encoding of 𝑥⃗ 1 

(Vaswani et al., 2023).

An important characteristic of this particular setup consists in the 

physically coherent separation of inputs and the differentiation of out­ 

put dimensions for individual parameters. For example, all reflectance 

parameters (𝜌 740 

, 𝑠, 𝑒) and the fluorescence emission amplitude 𝐹 737 

are estimated for each pixel from the radiance data and geometri­ 

cal information 𝜈 geo, but without providing the acquisition identifier 𝑢 

since the decoders to those parameters by definition do not depend on 

sensor characteristics or acquisition dependent changes. Similarly, at­ 

mospheric parameters are estimated from radiance and 𝜈 geo 

 alone, but, 

differently from the surface parameters, only per patch as we assume 

negligible variance of these parameters over small spatial distances. 

The sensor characterization Δ𝜆 and Δ𝜎 on the other hand is uniquely 

estimated from the acquisition identifier 𝑢 for individual across-track 

positions 𝑥 1 

 since it is driven by factors that are identical across single 

acquisitions. Both input separation and differentiation in output dimen­ 

sionality constrain the network optimization architecturally with prior 

knowledge of the physical processes and sensor design at play. On the 

other hand, we implicitly constrain the network by enforcing physically 

accurate solutions of the radiative transfer equation Eq. (1) given a par­ 

ticular parametrization ⃗ 𝑝̃. Differently from the simplified four-stream 

model used in SFMNN to model at-sensor radiances, the emulator ̃ 𝑡 al­

lows for pixel-wise parametrization of the radiative transfer formulation 

with known geometrical variables. This is a significant improvement 

over SFMNN’s formulation as the solution space of the network can be 

constrained very precisely in a pixel-wise fashion.

3.2 . Simulation tool

A MODTRAN-based simulation tool is utilized in this work (Pato 

et al., 2025, 2024, 2023) to simulate the HyPlant at-sensor radiance 

in a spectral range covering the O 2 

-A absorption band (740–780 nm) 

according to the model 

𝐿 𝑠 

(𝑝) = 

( 

𝐿 𝑝 

+
𝐸 

0
𝑔𝜌𝑇 

↑

𝜋(1 − 𝜌𝑆)
+ 𝐿 F 

𝑇 

↑ 

)

(

𝑝
)

(1)
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as a function of the parameters 𝑝 (as defined in Table 2) where 𝐿 𝑝 

 is the 

path radiance, 𝐸 

0 

𝑔  is the global solar irradiance on the ground, 𝑇 

↑  is the 

total transmission coefficient from surface to sensor (direct and diffuse 

sion modelled as a Gaussian with fixed variance and amplitude F 737 

, 

𝑆 is the spherical albedo of the atmosphere, 𝜌 is the hemispherical-

directional reflectance modelled as a 2nd order polynomial with offset 

𝜌 740 

, slope 𝑠 and curvature 𝑒, H 2 

O denotes the columnar water vapour 

content, AOT 550 

 the aerosol optical thickness, TA the viewing angle, 

SZA the solar zenith angle, RAA the relative azimuth angle between ob­ 

servation and irradiance directions, ℎgnd 

 

 the topographic height above 

sea level, ℎagl 

 

 the sensor height above ground level and Δ𝜆 and Δ𝜎 the 

scalar shifts in the center wavelength and full width at half maximum 

(FWHM). In order to be consistent with in-situ reference fluorescence 

estimates, we report SIF 760 instead of 𝐹  

 737 

 in all validation and anal­

ysis sections which we define as the functional value of the modelled 

fluorescence emission at 760 nm. The simulations have been conducted 

with an atmospheric model corresponding to the MODTRAN mid-latitude 

summer model. Thus, we have disregarded changes in the atmospheric 

↑ ↑components, 𝑇 ↑ 

 = 𝑇  

dir
 +𝑇

dif
 ), 𝐿 

 

 is the top-of-canopy fluorescence emis­𝐹

pressure profile that might be caused by changing meteorology or to­ 

pography. Concerning further simulation configuration details adopted 

in this work, we refer to prior work published by  (Pato et al., 2025). 

Finally, as in (Pato et al., 2023, 2024), we densely sample the parame­ 

ter space spanned by the parameter ranges in Table 2 and run a total of 

6.3 × 10 

6  simulations.

3.3 . Emulator definition

Emulation of a hyperspectral simulator 𝐿 𝑠 

(𝑝) ∶ R 

𝑀 → R 

Λ  from phys­ 

ical parameters 𝑝  ∈ R 

𝑀  (see Table 2) by an emulator 𝑡 is ultimately a 

regression problem where we derive a function 𝑡 ∶ R 

𝑀 → R 

Λ  that repro­ 

duces as closely as possible the simulator 𝐿 𝑠 

 at reduced computational 

cost. In practice, there is a trade-off between reducing the residual be­ 

tween the simulator and emulator on the one hand and reducing the 

computational cost of 𝑡 on the other for any non-trivial simulator 𝐿 𝑠 

. 

Since the emulator is used during the training of a neural network, we 

require additionally that its gradient computation is efficient and prefer­ 

ably can be integrated easily into common programming frameworks 

for deep learning. The polynomial emulator investigated by (Pato et al., 

2024, 2023) fulfills these requirements. It is defined as the polynomial 

function of d 

th  order 

𝑡 𝑑 (𝑝 | 𝑎K𝑑 ) = 

∑ 

⃗ 𝑘∈K 

𝑑

𝑝𝑘 0 

1 … 𝑝𝑘 𝑀 

𝑀 𝑎  𝑘⃗, (2)

∈ Λover the parameters 𝑝, where 𝑎  

  

 

R  and where the set of polynomial 𝑘⃗
features is defined as 

K 

𝑑 = 

{

𝑘⃗ ∈ N 

𝑀 ∶ 

∑

1≤𝑖≤𝑀
𝑘 𝑖 ≤ 𝑑 

} 

(3)

We train the emulator weights 𝑎  ⃗ 𝑘 in a least-squares optimization on a 

training subset partitioned from the total simulation data set following 

(Pato et al., 2024, 2023). Throughout this work, we have chosen 𝑑 = 4 

since prior work (Pato et al., 2024) has shown this dimensionality to 

yield sufficiently accurate emulators for SIF retrieval in the O 2 

-A band. 

Accordingly, we drop the dimension demarcation and refer to 𝑡 4 

 as 𝑡 in 

the rest of this contribution.

The emulator formulation in Eq. (2) is not adapted to cases where the 

physical parameters 𝑝 are spectrally variable. This is particularly prob­ 

lematic when wavelength dependent shifts Δ𝜆(𝜆) and Δ𝜎(𝜆) need to be 

represented rather than scalar shifts. In the case of scalar shifts, as im­ 

plemented in the original emulator definition of (Pato et al., 2024), the 

simulated spectra are exposed to the same simulated sensor miscalibra­ 

tion in all wavelengths. To improve the accuracy of the sensor model, we 

propose in this work the use of a computationally efficient reformulation 

of this emulator definition Eq. (2) allowing for wavelength dependent 

shifts Δ𝜆(𝜆) and Δ𝜎(𝜆). These reformulated emulators will be referred to 

as ̃ 𝑡. A detailed introduction and error analysis of this reformulation are 

provided in Appendices A and B.

3.4 . Loss formulation

The loss used in this setup is adapted from the loss used in the SFMNN 

framework (Buffat et al., 2025a). It consists of a batchwise mean squared 

reconstruction error complemented by two regularizers. Given the input 

radiance spectra 𝐿 HyP as measured by HyPlant and matching geometri­ 

 

cal metadata 𝜈geo 

 

 (flight ℎ sen 

 and ground altitude ℎ gnd 

, relative azimuth 

RAA, tilt angle TA and solar zenith angle SZA) we train the network 𝑛 

to minimize 

𝓁 

( 

𝐿HyP 

, ̂ 𝐿 HyP 

) 

=
⟨

(

𝐿HyP 

− 𝐿̂ HyP 

) 2⟩ 

𝜆, 𝑥 

+ 𝛾 𝑓 

𝓁 𝑓 

+ 𝛾 NDVI 𝓁 NDVI 

, (4)

where 𝐿 HyP 

 is the measured at-sensor radiance in the spectral window 

W and 

𝐿̂ HyP = 𝑡( 

̃⃗𝑝, Δ⃗𝜆, Δ⃗𝜎, 𝜈 geo 

) (5)

denotes the network prediction with predicted 𝑝⃗̃, Δ⃗𝜆 and Δ⃗𝜎 . ⟨… ⟩ 𝑥,𝜆 de­ 

notes the spatial and spectral mean over the patches included in a batch. 

Throughout all experiments in this work we have fixed the regularizer 

weights 𝛾 

 

= 1 and 𝛾NDVI = 10. These weights were established as they 𝑓
have shown satisfactory results in preliminary tests on the CKA-2020 

(600 m) data set (see Table 1).

The fluorescence regularization 

𝓁 𝑓 = 

⟨

∑

𝜆∈W
𝑤 𝜆 

( 

𝐿 HyP 

(𝜆) − 𝐿̂ HyP(𝜆)
)2
⟩ 

𝑥

|

|

|

|

| 𝛿𝑝 𝑖 

=0, 𝑝 𝑖 

≠𝐹 737

(6)

boosts the contribution of reconstruction residuals according to an SNR-

based weighting 𝑤 𝜆 

 that accounts for the spectral distribution of typical 

fluorescence emission. This weighting is derived as the Moore-Penrose 

solution to a linearized retrieval problem with known reflectance and 

atmospheric parameters (Buffat et al., 2025a). We thus restrict the gradi­ 

ent contribution of this loss term to affect only the fluorescence decoder 

(i.e., network weights uniquely related to parameters 𝑝 𝑖 

≠ 𝐹 737, re­ 

flectance, atmospheric and sensor parameters, are not affected by this 

term). The physiologically motivated regularizer 

𝓁 NDVI 

= 

⟨ ̂ 𝑓 ⋅ 𝛿 (NDVI < 𝜏) 

⟩

𝑥 

(7)

ensures that the fluorescence estimate 𝑓  vanishes in pixels with very 

low green vegetation, i.e., in pixels with a low Normalized Difference 

Vegetation Index (NDVI). To identify these pixels, we set a threshold 

𝜏 = 0.15 on an approximate NDVI product derived from the radiance 

𝐿 HyP 

.

3.5 . Training setup

The training of the EmSFMNN SIF predictors takes place in two 

steps. We first train a backbone on the PRE HyPlant dataset (see 

Table 1). This backbone is used as the initialization to all EmSFMNN 

instances that are subsequently finetuned for individual datasets in a 

second step. Finetuning of PRE aims at adjusting the network (1) to the 

dataset-specific radiance calibration, (2) to train the acquisition specific 

identifiers 𝑢 that determine the estimated shifts Δ𝜆 and Δ𝜎 and (3) to 

train in the specific parameter ranges covered differently in the vari­ 

ous datasets (e.g. TOPO exhibiting larger variation of ℎ agl 

). During the 

finetuning step, the encoder 𝑒 in 

 is fixed and only the decoders 𝑑 𝑣, the 

identifiers 𝑢 and the sensor characterization 𝑔 are trained. As the iden­ 

tifiers 𝑢 are not estimated from the radiance data but rather implicitly 

as a result of the architectural constraint in each acquisition, there is 

no generalization property of this part of the network. Thus, in order to 

get meaningful shift predictions, a finetuning is thus necessary. When 

Remote Sensing of Environment 334 (2026) 115203 

6 



J. Buffat, M. Pato, K. Alonso et al.

EmSFMNN instances are applied to datasets for which they were not 

finetuned, arbitrary identifiers 𝑢 are selected from the set of finetuned 𝑢. 
This procedure results in larger reconstruction errors than would have 

been possible with a finetuning of 𝑢 but it doesn’t necessarily affect the 

fluorescence estimate negatively. The spectral reconstruction window 

W was fixed to cover 750–770 nm.

4 . Results 

4.1 . Reconstruction performance

We evaluate the impact of the various implemented constraints, the 

optimization and the emulator extension on the reconstruction perfor­ 

mance. To this end, we compare the reconstruction performance of 

four different EmSFMNN setups to the reconstruction performance of 

an unconstrained least-squares optimization (LSQ) of the emulator 𝑡 to 

individual pixels in a single HyPlant acquisition of the SEL data set 

(see Table 4). We show an extract of the studied HyPlant acquisition 

in Fig. 4. This comparison will allow (i) highlighting the effects of the 

training constraints and adoption of wavelength dependent shifts on 

the reconstruction performance, (ii) gauging gauge the generalization of 

reconstruction performance across similar HyPlant campaigns and (iii) 

assessing the impact of finetuning on the reconstruction performance. By 

𝑚 CKA(𝑡)  we denote an EmSFMNN predictor using the spectrally explicit 

sensor miscalibration emulator 𝑡  and finetuned on the CKA-2020 (600 m) 

data set. The EmSFMNN 𝑚 SEL 

(𝑡)  and 𝑚SEL (𝑡) are equivalently trained on 

the SEL-2018 (600 m) data set and 𝑚 PRE(𝑡)  denotes the common back­

bone without finetuning trained on the PRE data set. Importantly, the 

HyPlant acquisition for which we evaluate the reconstruction perfor­ 

mance is part of the finetuning training set of 𝑚 SEL 

(𝑡)  but not of 𝑚CKA (𝑡). 
Due to the prediction of Δ𝜆 and Δ𝜎 in EmSFMNN being dependent on 

learnable IDs, and the ID not having been trained for 𝑚 CKA 

(𝑡) , we use a 

single ID in CKA that we arbitrarily choose from the set of IDs trained 

for CKA acquisitions. 

In Fig. 5 we report the distribution of the relative reconstruction 

residuals 

𝜀 = 

⟨

|

|

|

|

|

|

𝐿 HyP 

− 𝐿̂ HyP

𝐿 HyP

|

|

|

|

|

|

⟩

𝑥,𝜆

. (8)

of LSQ and all EmSFMNN predictors in the acquisition. We find that the 

unconstrained emulator optimization LSQ outperforms all EmSFMNN 

training setups in terms of reconstruction performance. However, since 

LSQ is completely unconstrained, the resulting estimates of physical pa­ 

rameters defining the simulation layer are not well disentangled. As a 

consequence, it cannot be used for SIF retrieval, even though it provides 

a useful baseline for the reconstruction error.

To first assess the impact of the feature-based setup and the training 

constraints of EmSFMNN, we compare 𝑚SEL 

 

(t) to LSQ. Since the emula­ 

tion layer of 𝑚 SEL 

(𝑡) and LSQ are the same, a comparison of 𝑚 SEL 

(𝑡) to 

the least-squares optimization LSQ isolates the impact of EmSFMNN’s 

constraint formulation and its feature-based optimization. The direct 

EmSFMNN equivalent 𝑚SEL 

 

(𝑡) performs significantly worse than LSQ, 

presumably due to the constrained optimization. However, this de­ 

crease in reconstruction performance can be improved by adopting the 

extended emulator formulation with bandwise shift prediction which 

results in a smaller lower limit of the reconstruction residuals. Inclusion 

Table 4 

Definition of the EmSFMNN setups evaluated on the SEL-2018 acquisition of 

Section 4.1.

Description

LSQ Unconstrained least-squares fit of emulator 𝑡 with scalar sensor shifts

𝑚PRE (𝑡)  EmSFMNN pretrained on PRE data set with wavelength dependent 𝑡 

𝑚SEL (𝑡)  EmSFMNN finetuned on SEL data set with 𝑡 

𝑚CKA (𝑡)  EmSFMNN finetuned on CKA data set with 𝑡 

𝑚SEL (𝑡) EmSFMNN finetuned on SEL data set with emulator 𝑡

Fig. 4. Prediction example of a HyPlant acquisition recorded on 2018/07/26 

15:30 CEST in Selhausen. Shown are a pseudo-color image (red: 682 nm, green: 

700 nm, blue: 670 nm) (left), SIF estimate with 𝑚 SEL  ̃

 

(t) (center) and with 𝑚 PRE 

(̃ 
 t)

(right). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)

Fig. 5. Distribution of relative reconstruction errors 𝜀 (see Eq. 8) plotted logarith­ 

mically for different EmSFMNN set-ups as well as a least-squares optimization 

(LSQ) (see Table 4) in a HyPlant acquisition recorded on 2018/07/26 15:30 

CEST in Selhausen (see Fig. 4). The median values of these distributions are 

reported directly in the figure with vertical lines. Mean relative reconstruc­

tion errors for 𝑚 SEL 

t and 𝑚 𝑡  
 SEL 

( ̃ ) overlap in this figure. 𝑟  𝑔 denotes the relative 

uncertainty of the radiometric calibration.

of wavelength dependent shifts also increases the tail towards larger 

residuals as can be observed from the error distribution of 𝑚SEL (𝑡). 

Secondly, to measure the generalization capacity of EmSFMNN 

across different data sets we compare 𝑚 CKA 

(𝑡) to 𝑚 SEL(𝑡) . The resid­

ual distribution of 𝑚 CKA 

(𝑡)  yields an 𝜀 which is significantly increased 

over its equivalent 𝑚 SEL(𝑡)  as it lacks finetuning to the HyPlant input 
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data acquisition. However, its performance is close to what can be ex­ 

pected from the relative uncertainty of the radiometric calibration of 

the at-sensor radiance 𝑟 𝑔 

. Since 𝑚 CKA 

(̃ 𝑡) (that has been finetuned on 

the CKA-2020 data set) is applied here on an acquisition from the SEL-

2018 data set, effects due to different yearly calibrations can affect the 

reconstruction performance.

Finally, to assess the impact of finetuning it can be observed that the 

relative reconstruction error of 𝑚 PRE 

( ̃
 𝑡) is constrained in the range 3–6 %. 

It is thus larger than the errors attributed purely to calibration uncer­ 

tainties and indicates that the backbone PRE is not able to reconstruct 

the model at-sensor radiance of arbitrary HyPlant acquisitions from its 

learned feature representation without prior finetuning.

4.2 . Validation with FLOX data

We validate EmSFMNN SIF predictions with top-of-canopy iFLD SIF 

estimates derived from radiance data recorded by FLOX devices. To be 

consistent with the FLOX iFLD retrieval yielding our ground-truth, we 

use the Gaussian fluorescence model assumption implemented in the 

simulations to calculate SIF 760 

. Five measurement time series are at our 

disposal acquired during HyPlant overflights in field campaigns in the 

years 2018–2021 (see Fig. 6). To support our comparison, we also re­ 

port the validation results for three baseline methods that were adapted 

to hyperspectral HyPlant imagery (iFLD (Wieneke et al., 2016; Damm 

et al., 2014), SFM (Cogliati et al., 2019, 2015) and SFMNN (Buffat et al., 

2025a)). Additionally, we show the impact of the emulator formula­ 

tion and the finetuning on the performance of the standard training 

setup denoted by EmSFMNN( 
̃ 𝑡) in Table 5. To this end, we report (i) 

results for the EmSFMNN setup using the polynomial interpolation with­ 

out band-wise sensor characterization, denoted as EmSFMNN(𝑡), and (ii) 

the performance of the coarsely pretrained SIF predictor, denoted as PRE 

(see Table 5).

We find that the EmSFMNN(̃ 𝑡) predictors finetuned to individual data 

sets generally are among the best SIF retrieval methods in terms of the 

mean absolute error with respect to FLOX estimates (MAE) and normal­ 

ized MAE (nMAE) (defined as mean relative absolute errors as in Eq. 8). 

EmSFMNN(̃ 𝑡) yields MAE scores consistently smaller than 0.4 mW nm 

−1

sr 

−1  m 

−2  whereas stronger variation in MAE can be found in the case 

of the iFLD, SFM and SFMNN SIF predictions. We notably find a reduced 

overestimating bias of EmSFMNN as compared to SFMNN in Fig. 6 and 

a higher accuracy than in SFM and iFLD predictions.

Both the use of ̃ 𝑡 instead of 𝑡 and the finetuning considerably de­

crease the MAE. This can be concluded from the improved performance 

of EmSFMNN(̃ 𝑡) over EmSFMNN(𝑡) and PRE. These two aspects have 

been introduced to improve the model representation by (i) a more ac­ 

curate simulation layer in the reconstruction loss and (ii) a more precise 

fitting of the spectral data by specializing the network weights to a se­ 

lection of HyPlant lines. While the use of the non-specialized pretrained 

EmSFMNN model PRE leads to validation results comparable to the base­ 

line methods, it is necessary to make use of a finetuning step to improve 

over the baseline methods iFLD, SFM and SFMNN. 

In Table 5 we equally report the Pearson correlation scores 𝑟 and the 

Explained Variance Score 𝑅 

2 . A consistent cross-validation assessment 

based on 𝑟 and 𝑅 

2  is, however, not possible throughout all validation 

data sets due to strongly variable performance under these two metrics. 

Due to the small number of validation data points these performance 

metrics are subject to large uncertainties. A reduced performance of 

EmSFMNN ( ̃
 𝑡) in terms of 𝑟 with respect to SFMNN is, however, ob­

servable in all data sets where such a comparison can be made. We 

hypothesize that this may be due to the stricter modelling approach 

of EmSFMNN resulting in a higher sensitivity to sensor noise. Finally, 

we point out that we find a consistent prediction underperformance in 

the WST-2019 dataset across all tested SIF retrieval algorithms in terms 

of 𝑟. In the cases exhibiting the highest accuracy scores (EmSFMNN( 𝑡) 
and SFMNN) a negative and a non-significant correlation score 𝑟 can 

be found. While we are unable to establish the reason for this be­ 

haviour, we hypothesize that it is partly explained by the overall 

variation in SIF across the WST-2019 dataset (∼1.75 ± 0.25 mW nm 

−1 

sr 

−1  m 

−2 ) which is lower than the average estimated uncertainty of 

the analysed SIF estimators. In this case small errors have a large im­ 

pact on the correlation. Secondly, dataset-specific effects leading to 

SIF dynamic prediction failure might be at play in all cases except 

SFM. 

4.3 . Topography

The emulator was derived from simulations covering an ℎ gnd 

 range 

of 0–0.76 km and of ℎ agl 

 0.2–2.86 km. This allows the application 

of EmSFMNN predictors in acquisitions with large height variation 

where both the surface height ℎ gnd 

 and flight height above ground level 

ℎ agl 

 change significantly over the course of a single datatake. To test 

the reconstruction performance of EmSFMNN predictors under these 

circumstances we examine the TOPO data set consisting of HyPlant ac­ 

quisitions with strong topographic variation and a nominal flight height 

of 600 m (see Table 1). We apply (i) the EmSFMNN predictor fine­ 

tuned to the CKA-2020 (600 m) data set (denoted as 𝑚 CKA 

) and (ii) 

an EmSFMNN finetuned to the TOPO data set (𝑚 TOPO 

). The finetun­ 

ing of the 𝑚 TOPO 

 and 𝑚CKA 

 

 was performed on the TOPO data set as 

described above (cf. Table 1) and only differed in the finetuning data 

set. Both predictors derive from an EmSFMNN backbone trained on the 

PRE data set which includes the data contained in TOPO. By examining 

on TOPO with both 𝑚 CKA 

 and 𝑚 TOPO 

 we can evaluate the importance 

of topography related distribution differences between finetuning data 

sets.

In Fig. 7(a) and (b) we summarize the residual statistics of 𝑚 CKA 

 and 

𝑚 TOPO 

 as a function of the flight height ℎ agl 

 in the full prediction spec­ 

tral window W (750–770 nm) as well as in a narrow spectral window 

WO2 A 

 in the O 2 

-A absorption band (759.5–761 nm). 𝑚CKA 

 

 outperforms 

the finetuned 𝑚 TOPO 

 in W exhibiting a residual distribution with fewer 

outliers. Notably, 𝑚 CKA 

 outperforms 𝑚 TOPO 

 including in ℎ agl 

 ranges that 

are not covered by the CKA-2020 (600 m) finetuning data set. The fine­ 

tuning to the validation data set TOPO yields, however, to an improved 

𝑚 TOPO 

 performance in the O 2 

-A band with 𝑚 TOPO 

 exhibiting an improved 

reconstruction performance overall. The strong reconstruction residual 

outliers of 𝑚 TOPO 

 are consequently contained in spectral regions outside 

the O 2 

-A band as can be understood from the fact that its performance 

on WO  2 

A 

 is less affected by it.

While we are able to assess the reconstruction performance of 𝑚 TOPO 

and 𝑚 CKA 

, we cannot evaluate the SIF predictions in the TOPO dataset 

due to lacking in-situ data. Therefore, we test whether in addition to 

the reconstruction performance the SIF prediction and reflectance esti­ 

mation are independent of the ℎ agl 

 variation. Fig. 8(a) shows that the 

SIF predictions of 𝑚 TOPO 

 and 𝑚 CKA 

 have a constant mean over most 

of the covered height range. This is to be expected in the case of a 

homogeneous distribution of fluorescence emitting surfaces. The de­ 

coupling of ℎ agl 

 from the SIF prediction is only invalid in the range 

ℎ agl 

< 0.5 km where both 𝑚 TOPO 

 and 𝑚 CKA 

 have a larger mean SIF 

prediction than in the rest of the height range. There are however 

significantly less HyPlant pixels falling in this range such that the 

homogeneity assumption is weakened due to a decreased statistical 

relevance.

In Fig. 9 we show an exemplary HyPlant acquisition that highlights 

the independence of the achieved SIF prediction and the reconstruction 

performance from ℎ agl 

. Both SIF and the fractional residual Δ𝐿∕𝐿 HyP 

 are 

unaffected by the topographic variation along-track over the hill slope 

in the image center. The SIF predictions differ only slightly in 𝑚TOPO 

 

 and 

𝑚 CKA 

 due to differences in the finetuning training data set.

Concluding, we can observe that the influence ℎagl 

 

 on EmSFMNN’s 

reconstruction performance, SIF and reflectance prediction is small. The 

variation of reconstruction errors, SIF and reflectance of both 𝑚 TOPO 

 and 
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Fig. 6. FLOX-derived iFLD SIF vs. HyPlant-derived EmSFMNN, SFMNN, SFM and iFLD SIF in the five in-situ validation data sets (see Table 1). The dashed line and 

the red floating labels report the linear relationship between airborne and in-situ FLOX iFLD estimates. In the CKA-2020 data sets FLOX measurements from different 

devices are reported separately. The x-axes of the subplots are shared and labelled at the bottom. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)

𝑚 CKA 

 do not vary systematically with ℎ agl 

. It could be observed that 

the choice of the training dataset for finetuning had a larger effect on 

EmSFMNN’s reconstruction performance than the topographic variation. 

This indicates that EmSFMNN can compensate for the variability in the 

atmospheric transfer with the specific choice of RTM emulation adopted 

in this contribution.
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Table 5 

Comparative validation of SFM, iFLD, SFMNN and EmSFMNN retrieval methods. We report the mean 

absolute error (MAE) of the EmSFMNN predictions with respect to FLOX measurements, the Pearson 

correlation 𝑟, the Explained Variance Score 𝑅 

2 , the normalized MAE (nMAE) defined as in Eq. (8) and 

the number of validation measurements 𝑁 . In cases where the p-value of 𝑟 is larger than 5 % we do 

not report 𝑟 and write − instead. Similarly, in cases where 𝑅 

2 ≤ 0 we do not report 𝑅 

2  and write −.

𝑟 𝑅 

2 MAE nMAE 𝑁
−1[mW nm  

  sr 

−1  m 

−2 ]

SEL-2018 (600 m) EmSFMNN (𝑡) 0.91 0.55 0.26 ± 0.09 0.30 10

EmSFMNN (𝑡) 0.86 0.74 0.46 ± 0.05 0.41 10

PRE 0.78 0.57 0.47 ± 0.06 0.48 10

SFMNN 0.98 – 0.68 ± 0.07 0.59 10

SFM 0.96 – 0.51 ± 0.07 0.54 10

iFLD 0.64 0.10 0.88 ± 0.00 0.69 11

WST-2019 (1500 m) EmSFMNN (𝑡) −0.54 – 0.29 ± 0.05 0.16 15

EmSFMNN (𝑡) −0.73 – 1.48 ± 0.05 0.88 15

PRE −0.78 – 0.41 ± 0.04 0.22 15

SFMNN – – 0.22 ± 0.10 0.12 15

SFM – – 0.53 ± 0.08 0.30 15

iFLD – – 0.80 ± 0.10 0.45 15

CKA-2020 (600 m) EmSFMNN (𝑡) 0.65 0.02 0.35 ± 0.05 0.54 16

EmSFMNN (𝑡) 0.69 0.18 0.47 ± 0.05 0.56 16

PRE 0.67 – 0.39 ± 0.06 0.48 16

SFMNN 0.69 0.34 0.33 ± 0.06 0.99 16

SFM 0.72 – 0.48 ± 0.06 0.53 16

iFLD 0.64 – 0.42 ± 0.09 0.70 16

CKA-2020 (350 m) EmSFMNN (𝑡) 0.74 0.04 0.28 ± 0.04 0.22 34

EmSFMNN (𝑡) 0.81 0.12 0.35 ± 0.04 0.27 34

PRE 0.80 – 0.33 ± 0.04 0.25 34

SFMNN 0.84 – 0.34 ± 0.04 0.24 34

SFM 0.87 – 0.35 ± 0.04 0.27 34

iFLD 0.58 0.05 0.28 ± 0.05 0.20 34

CKA-2021 (350 m) EmSFMNN (𝑡) – 0.19 0.38 ± 0.09 0.17 6

EmSFMNN (𝑡) – 0.16 1.07 ± 0.12 0.49 6

PRE – 0.30 0.70 ± 0.09 0.32 6

SFMNN – – 0.65 ± 0.10 0.29 6

SFM – – 0.50 ± 0.08 0.23 6

iFLD 0.85 0.71 0.12 ± 0.18 0.18 6

Fig. 7. Top row: Marginalized distribution of relative reconstruction residuals of 𝑚CKA 

 

 in red and 𝑚 TOPO 

 in blue in the whole fitted spectral window W (a) and in 

the spectral window W 

  

 in the O -A band (b). Bottom left: Relative reconstruction residuals of  (red) and O 22 A  𝑚 

 CKA 

𝑚 TOPO 

 (blue) stratified by the sensor height above 

ground ℎ agl  

 

 in W (a) and W
 

 (b). Red and blue lines denote the means, dark areas denote the 25–75 percentile ranges, light areas denote the 10–90 percentile O2 A
ranges. In yellow we highlight the range of ℎagl  covered by the CKA-2020 data set on which 𝑚 CKA 

 was finetuned. Bottom right: Logarithmic empirical histogram of 

ℎ agl 

 of CKA-2020 in yellow and TOPO in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 8. Top row: Marginalized distribution of reflectance offset parameter 𝜌 (a) and fluorescence emission amplitude F 737 

 as predicted by 𝑚 CKA 

 in red and 𝑚TOPO 

 

 in 

blue. Bottom left: reflectance offset parameter 𝜌 (a) and fluorescence emission amplitude F 737 

 (b) stratified by the sensor height above ground ℎ agl 

 as predicted by 

𝑚 CKA 

 in red and by 𝑚 TOPO 

 in blue. Red and blue lines denote the means, dark areas denote the 25–75 percentile ranges, light areas denote the 10–90 percentile ranges. 

In yellow we highlight the range of ℎ agl 

 covered by the CKA-2020 data set on which 𝑚 CKA 

 was finetuned. Bottom right: Logarithmic empirical histogram of ℎ agl 

 of 

CKA-2020 in yellow and TOPO in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Top row: Shown are the SIF prediction of TOPO(1) and CKA(1) along the ground surface altitude ℎ gnd 

 derived from a matching Digital Elevation Map (DEM). 

Lower rows: shown are a false color image of the HyPlant at-sensor radiance, the pixelwise SIF 

  

 prediction of TOPO (given in mW nm−1 sr−1 m−2) and the 760 nm
   

   

relative reconstruction error of TOPO in the spectral window W in a subset of the HyPlant acquisition displayed in the top row. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

5 . Discussion

5.1 . Simulation and emulator design and limitations

In this work the integrated use of a polynomial emulator and self-

supervised neural network training could be shown to yield both fast and 

accurate estimation of SIF at 760 nm. Two design choices of the simula­ 

tion model are of particular relevance to the discussion of EmSFMNN’s 

performance.

Firstly, the model underlying the simulation tool and the emula­ 

tor was set up to exclude cross-correlations between input parameters. 

While such cross-correlations may be learnt in EmSFMNN’s training 

setup, we do not implicitly enforce these by, e.g., making use of a 

physiologically plausible model such as SCOPE (Tol et al., 2009a). 

Such relationships would have confounded EmSFMNN’s capacity to fit 

the at-sensor radiance signal purely on the basis of physical princi­ 

ples. As an example, it is well known that both the reflectance in the 

spectral region of photosynthetically active radiation (PAR) and the 

total fluorescence emission amplitude 𝐹 737 

 are strongly correlated in 

green vegetation due to a common dependency on leaf chlorophyll con­ 

centration (Verrelst et al., 2015). Reconstructed SIF products involving 

spaceborne reflectance products such as the MODIS-based RSIF (Gentine 

and Alemohammad, 2018) and RTSIF (Chen et al., 2022), reconstructing 

the TROPOMI SIF product, make use of this relationship. Detailed studies 

with field data could also establish cross-correlations in reflectance-

based features and top-of-canopy SIF derived from airborne platforms 

resulting from structural effects (Yang and Van Der Tol, 2018; Yang 

et al., 2019) and biochemical processes related to non-photochemical 

quenching (Pinto et al., 2020). However, such dependencies, if incor­ 

porated a-priori in the predictor modelling assumptions, are prone to 

lead to model bias and, importantly, may well induce larger gradi­ 

ents in the self-supervised loss than the small at-sensor fluorescence 

signal. As a consequence, the influence of such fixed correlations on 
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the feature-based optimization and ultimately on the SIF estimate 

may trump the physical and causal spectral reconstruction approach 

leveraged in EmSFMNN.

Secondly, this contribution has focused on SIF retrieval in a nar­ 

row spectral range. The spectral range around the O 2 

-A absorption 

band of the simulation database has allowed us to (1) parameterize the 

reflectance and fluorescence with simple functions (second-order poly­ 

nomial, Gaussian) and (2) use a polynomial model to approximate the 

simulation database. The polynomial form chosen for the emulator was 

advantageous to the EmSFMNN setup as it allowed an easy integration 

of the emulator in the neural network architecture: both forward pass 

and backward gradient computation were achieved by implementing the 

emulator as a fixed linear layer.

The use of the plain polynomial emulator 𝑡 (Pato et al., 2023, 2024) 

for EmSFMNN has led to subpar performance with respect to in-situ 

FLOX measurements. While the lack of spectrally explicit sensor char­ 

acterization did not lead necessarily to decreased performance in terms 

of spectral reconstruction residuals, the emulator model’s incomplete­ 

ness has caused systematic errors in the signal decomposition. As a 

consequence, we have implemented an emulator capable of simulat­ 

ing HyPlant at-sensor radiances with bandwise spectral shifts with an 

efficient approximation ̃ 𝑡. This approximation can be shown to yield ac­

ceptable relative errors peaking at ∼3.5 % with respect to the exact, but 

computationally demanding emulator solution (see Appendix B). The 

error incurred by the approximation in the O 2 

-A absorption band may, 

however, still be significant in terms of reconstruction accuracy con­ 

sidering that the mean fluorescence emission at 760 nm in HyPlant 

acquisition amounts also to < 3 % of the mean at-sensor signal. The 

validation of the SIF prediction of EmSFMNN models integrating this 

approximate emulator ̃ 𝑡 proved sufficient to outperform all baseline 

methods in terms of accuracy.

While we have shown the application of EmSFMNN to HyPlant FLUO 

data in this contribution, the EmSFMNN approach to retrieve SIF can 

be implemented for data from different imaging sensors (e.g., in DESIS 

(Buffat et al., 2025b)) and could be extended to other spectral regions 

(e.g., the O 2 

-B band). Since the network architecture interacts with the 

data in the loss only through the interface of the emulator representing 

the physical constraints of the retrieval problem, such a change in the 

data modality would simply necessitate adapting the emulator. In par­ 

ticular, the modelling of the sensor in the simulation tool (Pato et al., 

2025) and an extension of the reflectance and fluorescence parametric 

functions to the new spectral range would be required. Further re­ 

search in emulator representations of simulated hyperspectral at-sensor 

radiance including bandwise sensor characterization is thus warranted. 

While the simple polynomial approach adopted here was suitable for 

the spectral range and simulation model that had been fixed for the 

EmSFMNN O 2 

-A SIF retrieval problem on HyPlant data, the integra­ 

tion of different emulator architectures (Verrelst et al., 2016, 2017; 

Bue et al., 2019) may become necessary for retrieval in different data 

modalities.

Finally, an extension of EmSFMNN to a generalized set of hyper­ 

spectral imaging sensors would equally require analysis of EmSFMNN’s 

prediction performance under variable sensor noise distributions. In 

this work, the simulation model underlying the emulation of the atmo­ 

spheric radiative transfer did not include sensor- or observation-specific 

noise distributions. An overall increased uniform noise level (decrease 

of the sensors signal-to-noise ratio) would decrease the quality of the 

gradients deduced from the reconstruction loss and hence would af­ 

fect EmSFMNN’s prediction performance negatively. More importantly, 

EmSFMNN’s training setup would be particularly impacted by spectrally 

non-uniform noise patterns as these would result in biased estimates of 

the model parameters in the presented training setup. 

5.2 . Prediction of atmospheric variables

We have tested the quality of EmSFMNN’s signal decomposition with 

respect to its reconstruction performance and the agreement of its SIF 

prediction with in-situ measurements. We could not validate the ac­ 

curacy of the predicted atmospheric variables (water vapour content 

H 2 

O and aerosol optical thickness AOT 550 

) with direct measurements. 

The prediction of these variables is understood to be very challeng­ 

ing in the setting adopted in the presented retrieval method since (i) 

the sensitivity of the at-sensor radiance to water vapour and AOT 550 

 in 

the fitting spectral window (750–770 nm) is small (Pato et al., 2025), 

(ii) the variation of both parameters in the training data is expected 

to be small due to similar meteorological conditions during HyPlant 

campaigns. Furthermore, there may be remaining representation in­ 

sufficiencies of the emulator 𝑡 that can result in EmSFMNN predictors 

leveraging the degrees of freedom in these parameters to adjust the at­ 

mospheric estimate to the observational data. In particular, we highlight 

that the at-sensor radiance simulations all have used a standardized at­ 

mospheric pressure profile (MODTRAN mid-latitude summer) while we 

have not adapted the emulator to the meteorological conditions at ac­ 

quisition time. Thus, while H 2 

O and AOT 550 

 were included explicitly in 

the simulations and EmSFMNN addresses these parameters with a spatial 

constraint, accurate retrieval of these parameters cannot be expected.

We show in Fig. 10, however, that the distributions of AOT 550 

 esti­ 

mates of single HyPlant acquisitions are approximately consistent with 

AOT 550 

 measurements of a CIMEL instrument located at the JOYCE 

AERONET station (FZJ-JOYCE, 2024) nearby the geographical center 

of HyPlant acquisitions in the SEL-2018 data set (∼5 km). We gathered 

CIMEL for this analysis CIMEL AOT 550 

 measurements with a maximum 

time difference to the HyPlant acquisition time of 20 min. In partic­ 

ular, we find a strong decrease in AOT 550 

 on 2018/06/27 which is 

reflected in EmSFMNN estimates as well. Furthermore, MODIS Terra and 

Aqua AOT 550 

 estimates from data with a maximum two-hour time dif­ 

ference to the HyPlant acquisition are similar to EmSFMNN. The MODIS 

estimates exhibit large uncertainties, however, such that they must 

be considered to gauge only very roughly the accuracy of EmSFMNN 

AOT 550 

.

A more detailed study of parameters pertaining to the atmospheric 

composition at acquisition time would be of relevance for EmSFMNN 

if it were to be applied to more susceptible spectral regions covered by 

full-spectrum retrieval. Furthermore, more extensive analysis could es­ 

tablish the performance benefit of including atmospheric estimates from 

different sensors as in (Buffat et al., 2025b). Since such a procedure is 

planned with the FLEX/Sentinel-3 tandem orbit configuration (Drusch 

et al., 2017), such analysis is especially relevant for further work on the 

application of EmSFMNN on FLEX data.

5.3 . Feature generalization of EmSFMNN

The validation analyses have shown good performance of EmSFMNN 

models on data for which the models were not finetuned. In Section 4.1 

we could show that 𝑚CKA 

 

(𝑡)  applied to a HyPlant acquisition from SEL-

2018 yielded a mean reconstruction performance of 𝜖 < 3.15 % as 

compared to the result of the finetuned 𝑚 SEL(𝑡)  of 𝜖 < 2.31 %. The SEL-

2018 data set is similar to CKA-2020 on which 𝑚CKA 

 

(𝑡)  was finetuned. 

Both data sets cover predominantly agricultural fields and exhibit only a 

small fraction of forested areas such that 𝑚 CKA(𝑡)  and 𝑚SEL (𝑡)  are trained 

with a similar spectral surface composition. Furthermore, the ℎ agl 

 and 

ℎ gnd 

 ranges in both data sets are overlapping. However, the data sets 

were acquired in different years resulting in varying radiometric sensor 

calibrations associated with a mean uncertainty of 3 %. These results 

indicate that EmSFMNN generalizes well across HyPlant data sets with 

large similarities. In addition, Section 4.2 could establish that the non-

finetuned backbone predictor PRE could estimate SIF outperforming the 

SFM, iFLD and SFMNN baselines in some validation data sets, high­ 

lighting the impact of strong feature generalization on EmSFMNN SIF 

estimates.

Furthermore, generalization capability of EmSFMNN across topo­ 

graphic changes could be established in Section 4.3. We could show 

that 𝑚 CKA(𝑡), which was finetuned on data exhibiting only small 
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Fig. 10. Comparison of AOT 550 

 estimates. Black: distribution of EmSFMNN AOT 550 

 estimates in single HyPlant acquisitions, box width show 25–75 % percentiles and 

whiskers show 5−95 % percentiles, the median is reported in orange, Blue: CIMEL measurements of the JOYCE AERONET station (FZJ-JOYCE, 2024) located at ∼5 

km from the SEL-2018 HyPlant acquisitions (left), box width shows the standard deviation of all measurements recorded within 20 min of the HyPlant acquisition 

time, Green: Deep Blue AOT 550 

 products of MODIS Terra (MODIS Atmosphere Science Team, 2017a) and Aqua (MODIS Atmosphere Science Team, 2017b) at 10 km 

resolution, box width shows the standard deviation of available Terra and Aqua products within two hours of the HyPlant acquisition time and the whiskers represent 

the mean of the provided uncertainty of the estimates within a 30 km window around the location of the CKA-2020 estimates. Red: maximum AOT 550 

 covered in 

simulation database. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

topographic variation, had an improved reconstruction performance 

over an EmSFMNN instance that was finetuned on the full topographic 

range present in TOPO. We interpret this finding such that the learned 

feature space successfully disentangles features that are unrelated to the 

topographic change and the associated optical path length differences 

(i.e. the reflectance and SIF emission). This in turn is corroborated by 

the observation that both the statistical distribution of the predicted SIF 

emission and of the reflectance are constant across the full topographic 

range.

The possibility to base the inference of SIF in new data on a sin­ 

gle generalized SIF retrieval model is an advantage of the feature based 

optimization of EmSFMNN over other physical SIF retrieval methods for 

which a repeated pixelwise or campaign-wise optimization has to be con­ 

ducted. While we have not conducted validation studies on completely 

new data sources, that were not included in the pretraining or finetun­ 

ing training data, we could show that the EmSFMNN could be finetuned 

successfully to a range of HyPlant data sets without complete retrain­ 

ing. If the importance of finetuning on the SIF prediction performance 

could be better quantified and reduced, the emulator based SIF retrieval 

method developed here could therefore prove to be a useful contribu­ 

tion to efficient SIF retrieval method for hyperspectral high-throughput 

imaging sensors where inference speed is critical.

6 . Conclusion

In this work, we have applied EmSFMNN to HyPlant FLUO data. 

This novel emulation-based SIF retrieval method was first presented by 

Buffat et al. (Buffat et al., 2025b) on DESIS acquisitions. EmSFMNN 

utilizes feature-based optimization and hyperspectral RTM emulation 

to disentangle the fluorescence signal from the at-sensor radiance. We 

have proposed an extension to the originally purely polynomial model 

used for DESIS to represent spectrally explicit CW and FWHM shifts in 

HyPlant computationally efficiently. This has allowed for the training 

of EmSFMNN on a significant fraction of the total available HyPlant 

acquisitions.

The direct SIF validation with in-situ SIF estimates derived from 

FLOX measurements has shown that the accuracy of finetuned 

EmSFMNN outperforms both SFMNN and traditional baseline meth­ 

ods (SFM, iFLD). Importantly, we could also show that a pretrained 

backbone EmSFMNN predictor generalized well across the considered 

HyPlant campaigns such that improved EmSFMNN SIF retrievals could 

be achieved at a smaller computational cost than traditional pixel-wise 

optimization. The computational efficiency of this approach is due to 

the feature-based nature of EmSFMNN that allows a single model to be 

used for inference without prior finetuning.

Furthermore, in an analysis with HyPlant acquisition with strong 

topographic variability, we demonstrated that the setup allows for a gen­ 

eralization of the application domain of SIF retrieval. The possibility to 

constrain the retrieval by exact topography and geometrical information 

has allowed the application of EmSFMNN to HyPlant acquisitions with 

strong topographic variation where prior retrieval algorithms could not 

be applied in a straightforward fashion.

Finally, we have presented a small comparison of EmSFMNN pre­ 

dicted AOT 550 

 with high-fidelity CIMEL AOT 550 

 measurements in a 

single campaign data set consisting of 13 acquisitions giving first in­ 

sights into the accuracy of the atmospheric characterization estimated 

by EmSFMNN. We found a consistent variation of predicted AOT 550 

 with 

the measurements which supports the hypothesis that the disentangling 

of reflectance, fluorescence and atmospheric components as predicted 

by EmSFMNN is trustworthy. Further work is, however, necessary to 

assess EmSFMNN’s performance in predicting secondary atmospheric 

components under general observation conditions.

As HyPlant FLUO is the airborne demonstrator for the spaceborne 

FLORIS sensor, that will be operated onboard ESA’s Earth Explorer 

mission, this work is relevant for further research in computationally 

efficient SIF retrieval algorithms for data acquired by FLORIS. While 

(Buffat et al., 2025b) have shown how EmSFMNN could be applied to 

radiance data acquired on a spaceborne platform, in this work we have 

focused specifically on the requirements of HyPlant FLUO, a sensor com­ 

parable to FLORIS. The encouraging results in terms of precision in both 

DESIS and HyPlant FLUO suggest that EmSFMNN may be successfully 

applied to FLORIS data as well.
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Appendix A . Emulation of a wavelength dependent sensor model

The simulation database is created for scalar shifts Δ𝜆 and Δ𝜎, i.e., 
Λsimulated spectra 𝑠(𝑝) ∈ R  

  will experience the same simulated sensor 

miscalibration in all wavelengths 𝜆 ∈ Λ. In a realistic sensor model, 

CW and FWHM shifts are, however, functions of the wavelength such 
Λthat we ought to find an emulator with dependency on shifts Δ⃗𝜆  ∈ R 

and Δ⃗𝜎 ∈ RΛ  in addition to the other input parameters 𝑝̃.     We assume 

that there is no cross dependency of the shifts either in the measured 

at-sensor radiance 𝐿 or the simulator 𝐿 𝑠 

, i.e., 

∀𝑖 ≠ 𝑘 ∶ 

𝑑𝐿 𝑖
𝑑𝑣 𝑘

= 

𝑑 

( 

𝐿𝑠 

) 

𝑖( ⃗̃𝑝, Δ⃗𝜆, Δ⃗𝜎) 

𝑑𝑣 𝑘
= 0, 𝑣 ∈ { Δ⃗𝜆, Δ⃗𝜎}. (A.1)

In this case a naive approach to extend the emulator could be achieved 

by rewriting 

𝑡 

Λ
𝑑

(

⃗̃𝑝, Δ⃗𝜆, 

⃗ Δ𝜎 

) 

= 

( 

𝑡𝑑 

(𝜆 𝑖 | ⃗̃𝑝,Δ𝜎 𝑖 

,Δ𝜆 𝑖 

) 

) 

0≤𝑖≤Λ 

, (A.2)

where 𝑡 𝑑 

 is defined in Eq. (2). Since the simulation database covers a 

large number of spectral bands (Λ = 349) such an approach results in a 

significant increase in computation time for a single spectrum; the emu­ 

lator would need to be run Λ times for a single emulated spectrum. We 

therefore adopt an approximation. We derive a multiplicative correction 

factor

𝑏(𝜆 𝑖 

| Δ⃗𝜆, 

⃗ Δ𝜎) = E 

 

𝑤 

 

𝜆𝑖 

| 

⃗̃𝑝, Δ𝜆 𝑖 

,Δ𝜎 𝑖

 

(A.3)
[ ( )]

= E
⎡ 

⎢ 

⎢ 

⎢ 

⎣

𝑡 𝑑 

( 

𝜆𝑖 

|
⃗̃𝑝, Δ𝜆 𝑖 

,Δ𝜎 𝑖

)

𝑡 𝑑

( 

𝜆 𝑖 

|
⃗ 𝑝̃, Δ𝜆 𝑖 

= Δ𝜎 𝑖 = 0 

)

⎤ 

⎥ 

⎥ 

⎥ 

⎦

(A.4)

where the expectation is calculated by sampling randomly over the pa­ 

rameter distribution in the input parameter space. As we will show 

below, the variance over this distribution is very small, such that we 

can write 

̃ 𝑡 𝑑

( 

𝜆𝑖 

|
⃗̃𝑝, Δ⃗𝜆, 

⃗ Δ𝜎 

) 

≈ 𝑏(𝜆 𝑖 

| Δ⃗𝜆, 

⃗ Δ𝜎) ⋅ 𝑡 𝑑 

( 

𝜆𝑖 

|
⃗ 𝑝̃, Δ𝜆 𝑖 

= Δ𝜎 𝑖 = 0 

) 

. (A.5)

The fitting of 𝑏 has only to be performed once prior to training. Thus, 

only the inference computation time is relevant and the time for fit­ 

ting 𝑏 can be neglected. With 𝑏 being sufficiently simple we therefore 

can reduce the relevant computation cost by adopting ̃ 𝑡 𝑑  over 𝑡 

Λ
𝑑  (see 

Table B.6).

Table B.6 

Prediction time measurements for the original emulator 𝑡4 , the 
Λoriginal emulator applied in a bandwise fashion 𝑡  and the em­4

ulator approximation 𝑡  
 . In the case of 𝑡  only scalar sensor 4 4

shifts were computed. The values represent the average of 20 

time measurements on a single GPU (NVIDIA Quadro RTX 8000) 

predicting a batch of 104  samples.

𝑡 4 𝑡Λ4 𝑡  
 4

Prediction time per sample 0.28 𝜇s 55.40 𝜇s 1.93 𝜇s

Appendix B . Accuracy of the extended emulation

We have trained a 4 

th  order polynomial emulator 𝑡 on simulation 

databases covering the parameter ranges given in Table 2 as in (Pato 

et al., 2024). In order to allow for efficient training we then have im­ 

plemented the emulator extension for wavelength dependent shifts ̃ 𝑡 (as 

defined in Appendix A) based on the polynomial emulator 𝑡 4 

 which acts 

only on scalar shifts as outlined in Section 3.3. To this end, we have 

computed the multiplicative factor 𝑚 as the expectation in Eq. (A.3). To 

compute the distribution, we uniformly sampled a large number of pa­ 

rameter combinations 𝑝 and sensor shifts Δ⃗𝜆 and Δ⃗𝜎  in the input space 

spanned by the individual parameter ranges.

We found the standard deviations of 𝑤 to be bounded by 3.5 % under 

CW shifts and 0.06 % by FHWM shifts which we regarded as sufficiently 

small to approximate it by its mean 𝑚 (see Fig. A.11). Subsequently, we 

fitted a 5th order polynomial to the derived 𝑚 to gain a multiplicative 

factor defined on the whole input parameter space discarding the need 

for interpolation during prediction. The dimension of this polynomial 

was required to be just large enough to fit 𝑚 well. The use of ̃ 𝑡 4 leads to 

a significant time reduction as compared to 𝑡 

Λ
4  (cf. Table B.6).

In order to evaluate the accuracy of 𝑡  we compared it to 𝑡  on a 4
uniformly sampled test set. While 𝑡Λ  takes significantly longer to com­4
pute, its accuracy with respect to the RTM is as high as the emulator 

itself since it essentially computes the emulator in a bandwise fashion. 

Λ

In Fig. B.12 we show that the mean relative error incurred by using the 

approximation 𝑡4   is smaller than 1 %. However, the 95 % percentile 

reaches a relative error of 3.5 % inside the O 2 

-A band. We equally show 
Λthe effect of neglecting bandwise shifts by comparing emulations of 𝑡  

 4
with 𝑡 4 

 emulations leveraging only scalar shifts. The same parameters 𝑝̃ 

were used for 𝑡 

Λ  and 𝑡 4 

 with only Δ𝜆 and Δ𝜎 set to a fixed scalar value 4
for 𝑡 4 

. The relative errors can reach up to 10–20 % in the O 2 

-A band 

highlighting the importance of bandwise sensor characterization.

̃
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Fig. A.11. Multiplicative unitless factor 𝑤 of 𝑡 4 

 under variable sensor shifts (Δ𝜆 and Δ𝜎) in three selected wavelengths. In blue is plotted the standard deviation of 

𝑤 (as defined in Eq. (A.3)) over the distribution of randomly sampled emulator parameter configurations 𝑝. The fitted mean used as multiplicative correction 𝑏 (see 

Eq. (A.3)) is plotted in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B.12. Logarithmically displayed relative errors of the approximate emulator 𝑡  
 

Λ (green/yellow) and scalar shift emulator 𝑡 (pink) with respect to the accurate 4 𝑡 4
emulator. In the case of 𝑡 

 

 we set Δ𝜆 = Δ𝜎 = 0. The 25−75 % percentile range is plotted in dark green, the 5 %–95 % percentile range in light green, the mean in 4
yellow. Pink denotes the 25%–75 % percentile range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.)

Appendix C . Supplementary data

Supplementary data to this article can be found online at doi:10. 

1016/j.rse.2025.115203. 

Data availability

Data will be made available on request. 
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