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HIGHLIGHTS

« An emulator and a neural network are coupled for SIF retrieval.
« Validation with in-situ estimates indicates reliable accuracy and generalization.
« The approach allows pixelwise scene parameterization to model the radiative transfer.

ARTICLE INFO ABSTRACT

Communicated by Dr Jing M. Chen The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery requires accurate atmospheric com-
pensation to correctly disentangle its small contribution to the at-sensor radiance from other confounding factors.
In spectral fitting SIF retrieval approaches this compensation is estimated in a joint optimization of free variables
when fitting the measured at-sensor signal. Due to the computational complexity of Radiative Transfer Models
(RTMs) that satisfy the level of precision required for accurate SIF retrieval, fully joint estimations are practi-
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Hyperspectral sensors cally unachievable with exact physical simulation. We present in this contribution an emulator-based spectral
Radiative transfer modelling fitting method neural network (EmSFMNN) approach integrating RTM emulation and self-supervised training for
Spectral fitting methods computationally efficient and accurate SIF retrieval in the O,-A absorption band of HyPlant imagery. In a valida-

tion study with in-situ top-of-canopy SIF measurements we find improved performance over traditional retrieval
methods. Furthermore, we show that the model predicts plausible SIF emission in topographically variable ter-
rain without scene-specific adaptations. Since EmSFMNN can be adapted to hyperspectral imaging sensors in a
straightforward fashion, it may prove to be an interesting SIF retrieval method for other sensors on airborne and
spaceborne platforms.

1. Introduction 2007, libRadTran Emde et al., 2016) to derive appropriate correction
algorithms for these effects. In vegetation-related remote sensing it
is crucial to couple such atmospheric models with leaf and soil opti-
cal properties, leaf-level energy fluxes (Jacquemoud et al., 1990; Feret
et al., 2008; Tol et al., 2009a,b), and radiative transfer models in the
canopy (Jacquemoud et al., 2009; Gastellu-Etchegorry et al., 2015) to
enable accurate retrieval of biophysical parameters from remote sensing
reflectances.

Similarly, the retrieval of sun-induced fluorescence (SIF) from hy-
perspectral imagery in atmospheric absorption bands relies heavily on

Any application based on hyperspectral imagery of the earth’s sur-
face acquired from remote platforms must consider the influence of
the atmosphere at acquisition time. The atmospheric state has a con-
founding influence on the measured at-sensor radiance. In order to
disentangle atmospheric effects from any physical surface variable a firm
understanding of the physical signal generation is necessary. Various
atmospheric radiative transfer models (RTMs) have been developed
(e.g. MODTRANG Berk et al., 2014, 6S/6SV Kotchenova et al., 2006,
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accurate modelling of atmospheric radiative transfer and of sensor prop-
erties. The state of the atmosphere parameterized by its water vapour
content, the type and density of aerosols at recording time as well as the
pressure and temperature profiles along the optical path modulates the
radiance signal from which SIF is retrieved (Pato et al., 2025; Daumard
et al., 2015; Cogliati et al., 2015; Sabater et al., 2018). Since in typical
airborne acquisition scenarios for SIF retrieval no atmospheric measure-
ments are recorded, atmospheric variables are usually estimated using
RTMs in iterative processes. However, RTMs often cannot be used di-
rectly in radiance-based estimation due to their computational cost. To
reduce the retrieval dependency and the number of RTM simulations re-
quired to retrieve SIF from at-sensor radiance, a two-step procedure is
assumed in various SIF retrieval methods as opposed to a joint estimation
of surface, atmospheric and sensor related parameters.

In a first step, the atmosphere is characterized for a set of pixels
to derive the atmospheric transmittance with the help of an RTM. In a
second step, these transmittance estimates are used to disentangle re-
flectance, fluorescence and possibly sensor miscalibrations commonly
parameterized in center wavelength (CW) and full width at half maxi-
mum (FWHM) shifts. For example, (Cogliati et al., 2019; Wieneke et al.,
2016) derive a set of atmospheric transfer functions for single acquisi-
tions using an RTM ‘interrogation’ technique first introduced by Verhoef
and Bach (2003). Operationally, these estimated transfer functions are
finetuned to account for retrieval errors of atmospheric components due
to sensor noise, sensor miscalibration and model inaccuracies by mod-
ifications of a procedure called transmittance correction (Guanter et al.,
2010; Damm et al., 2014). This type of finetuning of the atmospheric
transfer functions is based on the presence of non-vegetated pixels that
are not affected by fluorescence. The identification of non-vegetated soil
pixels can be difficult, however, in many geographical areas and espe-
cially in observation setups resulting in pixel sizes larger than a few
meters where pure pixels are rare.

The validity of constant atmospheric transfer across a large set of
spatial pixels relies on auto-correlation distances of atmospheric fac-
tors in airborne imagery being usually larger than the spatial extent
of the prediction (Anderson et al., 2003; Thompson et al., 2021). This
usually results in the use of a single RTM estimate per acquisition. In
the case of spaceborne acquisitions with much larger spatial footprints,
as will be provided for example by the FLEX mission (Drusch et al.,
2017), this assumption is not satisfied and strategies to localize the atmo-
spheric characterizations efficiently must be developed. In the context of
atmospheric correction for accurate reflectance estimation (Thompson
et al., 2022) have for example recently demonstrated the use of local
linear emulators for accurate and computationally efficient atmospheric
correction.

Similarly to changing atmospheric conditions on spatial scales rel-
evant to satellite observations, the strongly changing observational
conditions in airborne observations of topographically variable terrain
are a challenge for SIF retrieval algorithms based on spectral regions
affected by O, absorption. The simplifying assumption of constant atmo-
spheric transmittance is invalid in these cases since the resulting optical
path differences cause large variance in the depth of these absorption
features.

Buffat et al. (2025a) have proposed a pathway to computationally
efficient SIF retrieval in these conditions by introducing the Spectral
Fitting Method Neural Network (SFMNN). A reconstruction based on
a Principal Component Analysis (PCA) of atmospheric transfer func-
tions is used to model the radiative transfer nonparametrically in this
approach. This allows for localized radiative transfer estimations and,
importantly, a joint retrieval of the transfer functions as well as sur-
face and sensor related quantities. However, the PCA loadings are fitted
non-parametrically since they are not formulated as functions of phys-
ical quantities (e.g., surface and sensor altitude, water vapour content,
aerosol optical density) as would be the case with physically explicit
RTM simulations. This (i) impedes the explanatory power of atmospheric
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estimates and (ii) does not allow for constraining the atmospheric
estimates with known physical quantities.

In this work, we propose the use of RTM emulation instead of the
PCA-based radiative transfer formulation adopted in SFMNN to increase
its physical accuracy in HyPlant FLUO data. Such an emulator-based
SFMNN (EmSFMNN) approach has recently been validated for space-
borne DESIS data (Buffat et al., 2025b) in conjunction with a loss
formulation similar to the original SFMNN approach (Buffat et al.,
2025a). The authors find good agreement between their DESIS derived
SIF estimates and HyPlant-based SIF estimates in a benchmark dataset
consisting of quasi-simultaneously recorded HyPlant and DESIS acquisi-
tions. The results of this study highlight the potential of the SFMNN
approach for hyperspectral sensors with improved spectral sampling
such as HyPlant FLUO and the FLORIS sensor onboard the ESA’s Earth
Explorer Mission FLEX (Drusch et al., 2017).

RTM emulation can be regarded as a computationally efficient ap-
proximation of the exact simulation by a function acting on the same
input parameter space as its RTM counterpart (Servera et al., 2022). The
functional form of such emulators is not relevant a priori, but depends on
the application specifications such as the required computational speed,
the reconstruction performance, the spectral range and the input pa-
rameter dimensionality. In this contribution, we derive a polynomial
emulator from a large simulation database replicating typical observa-
tional conditions and the sensor characterization of the hyperspectral
imaging sensor system HyPlant based on prior analysis published in
(Pato et al., 2025, 2024, 2023). In this contribution, we show that ex-
tending this emulator to represent bandwise spectral miscalibration is
integral for accurate SIF retrieval in HyPlant data. The functional form
of the proposed extension matches well with the specific requirements of
neural network training. The computational efficiency of its predictions
and gradient computation is sufficient for training on large hyperspec-
tral databases. With this novel neural network approach to integrate a
computationally efficient model of canopy level optical properties and
atmospheric radiative transfer into a SIF retrieval scheme, we are able
for the first time to make use of a pixelwise geometrical parametrization
for a joint estimation of SIF and reflectance in airborne SIF retrieval.

In this study, we focus on SIF retrieval of selected campaign data
sets of the hyperspectral HyPlant sensor system (Siegmann et al., 2019;
Buffat et al., 2024a). The sensor characteristics of HyPlant and the size
of HyPlant data sets are uniquely suited to develop and improve partly
data-driven SIF retrieval algorithms such as ours. Since HyPlant data is
often acquired during field campaigns featuring ground based SIF mea-
surements, we are able to complement the present study with a direct
comparison of SIF estimates of our approach with ground-based in-situ
SIF estimates. However, we point out that while HyPlant is well suited
to test the setup presented in this work, EnSFMNN may be applied to
data acquired by other airborne or spaceborne sensors. Its specific for-
mulation is in fact well suited to cope with large existing hyperspectral
data sets and continuous data streams of hyperspectral imaging sensors.

2. Data
2.1. Data quality provided by the HyPlant FLUO sensor

The HyPlant FLUO sensor (Siegmann et al., 2019) is the airborne
demonstrator for the spaceborne FLEX satellite mission (Drusch et al.,
2017). As such, it has been designed specifically for SIF retrieval in
the atmospheric O,-A and O,-B absorption bands with a spectral sam-
pling interval of 0.11 nm and a full width at half maximum (FWHM)
of 0.25 nm. A large collection of hyperspectral HyPlant data sets have
been collected since 2014 (European Space Agency, 2017a,b, 2018,
2019; Siegmann et al., 2021, 2022; Rascher et al., 2022) and are
partly openly available (Buffat et al., 2024a), (Buffat et al., 2024b). In
particular, yearly data sets since 2018 can be considered comparable
across different campaigns due to the standardization of the radiomet-
ric calibration and the geometric correction. Overall, the radiometric
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Table 1
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Data sets of compiled HyPlant acquisitions from different locations in the years 2018-2023. Data Set denotes a
single compilation. With Campaign we denote the campaign identifier pointing to the used acquisitions according
to the identified scheme outlined in the openly available HyData data set (Buffat et al., 2024a), with FLOX we
denote the availability of simultaneous FLOX data, with A4 the maximum topographic variation over the compiled
data set, with GSD the physical ground sampling distance of individual pixels and with |D| the data set size in
terms of number of 60 x 60 px image crops. We report the number of patches used for training in parenthesis.

Data Set Campaign FLOX Ah [m] GSD [m] |D| [x10%] Location
SEL-2018 (600 m) SEL v 20 1x1 15 (5) Selhausen, DE
WST-2019 (1500 m) WST 4 20 2.3x23 14 (5) Braccagni, IT
CKA-2020 (600 m) CKA 4 20 1x1 10 (3) KI. Altendorf, DE
CKA-2020 (350 m) CKA v 20 05x1 8(2) Kl. Altendorf, DE
CKA-2021 (350 m) CKA v 20 0.5x1 4 (1) Kl. Altendorf, DE
TOPO SOP, HOE - 300 1x1 11 (3) Jiilich, DE Holstein, CH
600 m
2021-2023
PRE PHY, HOE - 300 0.5-2.3 235 (38)
CKA, SEL
WST, NRS
SOP, TR32
350-1800 m
2018-2023
: Table 2
nadir Svecificati . .
pecification of the ranges of all physical variables
necessary for the parameterization of the simula-
tion tool. H,O denotes vertical water vapour content,
observer

Fig. 1. Geometrical set-up of the sun-observer geometry definitions in use. RAA
denotes the relative azimuth angle, TA the tilt angle and SZA the sun zenith
angle.

calibration achieves a mean relative uncertainty Ty of 3 % (Rascher et al.,
2022) and the geolocalization subpixel accuracy (Siegmann et al., 2019).

In this study, we make use of radiometrically corrected HyPlant
FLUO acquisitions obtained during the years 2018 — 2023 (cf. Table 1) in
different flight campaigns, various locations and varying sun—observer
geometries. The dataset incorporates a large portion of all available
HyPlant FLUO acquisitions from this time period. We notably include
acquisitions with strong topographic variation to train and to test the re-
trieval performance under these demanding conditions (see Section 4.3).

2.2. Simulation of HyPlant at-sensor radiance

The emulator utilized in this work is based on the polynomial emu-
lator described in (Pato et al., 2024, 2023) derived from a simulation
tool generating single pixel at-sensor radiance (Pato et al., 2025). It
uses MODTRANG to model radiative transfer through the atmosphere
at 0.1 cm~!. Simple parametric models are assumed for surface re-
flectance and fluorescence emission in the spectral range around the

AOTs;5, the aerosol optical thickness at 550 nm, TA
the sensor’s viewing angle, SZA the solar zenith an-
gle, RAA the relative azimuth angle, Ay, the ground
altitude above sea level, h,, the sensor height above
ground level. p,,,, s and e denote bias, slope and cur-
vature of the reflectance according to the reflectance
model definition given in (Pato et al., 2025, 2024),
F;; is the fluorescence amplitude at 737 nm (*: F,5; is
given in units of [mW/nm/sr/m?]). A4 and Ac denote
wavelength and sensor resolution shifts.

Specification Range
Atmosphere H,0 [cm] 0.3-3.0
AOTsg, [1 0.02-0.30
Geometry TA[°] 0-25
SZA [°] 20-55
RAA [°] 0-180
hgng [km] 0-0.760
hag [km] 0.2-2.86
Surface Prao [1 0.05-0.60
s [nm~1] 0-0.012
e[l 0-1
Fiy 7] 0-8
Sensor A\ [nm] [—0.080, +0.080]

Ac [nm] [-0.040, 40.040]
Input dimensions 13
Number of bands 349

Number of samples 6.3 10°

0,-A oxygen absorption band. The parameters of the simulator have
been chosen according to an extensive sensitivity study performed in
(Pato et al., 2025). We fixed the ranges of the resulting 13 parameters
(see Table 2) to cover the empirical distributions found in the HyPlant
acquisitions used in this work. Appropriate ranges for the geometric
parameters sensor altitude above ground level h,g, ground altitude hgpnq,
relative azimuth angle (RAA) and tilt angle TA could be established ex-
actly from metadata provided with HyPlant data (cmp. Fig. 1). The
ranges for the surface parameters and for the sensor characterization
were also adopted directly from preparatory work in (Pato et al., 2024,
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2023). The parametrization of a simple quadratic reflectance model im-
plemented in the simulation tool was adopted according to an analysis
of vegetation and soil reflectance spectra of the DUAL hemispherical-
directional reflectance product that is computed operationally for all
HyPlant acquisitions. Equally, we simulated fluorescence emission in
the O,-A band according to the top-of-canopy fluorescence emission
model adopted by Pato et al. (2025) as a Gaussian with fixed mean (u =
737 nm), fixed standard deviation (¢ = 20 nm) and a free amplitude
F;3;. The ranges regarding the sensor characterization parameterized by
center wavelength shifts A4 and FWHM shifts Ac were derived from in-
flight data. Due to the lack of simultaneous measurements, which would
have allowed estimates of aerosol optical thickness AOTss5, and water
vapour density H,O, these ranges were chosen such that they covered
all possible atmospheric states in which HyPlant campaigns are operated
(cloud-free weather conditions in mid-latitude regions in summer).

We sampled the parameter ranges in Table 2 with different sampling
strategies for the training and validation data set to derive an emulator
as outlined in (Pato et al., 2024, 2023). Importantly, the input parame-
ters p were sampled independently. Since the parametric models for the
spectral shapes of the reflectance and fluorescence implemented in the
simulation tool were completely independent as well, we prevented our
retrieval method from incorporating cross-correlations between fitted
parameters a priori. This would have undermined the purely physical
approach followed in this work.

2.3. In-situ SIF validation data

For a subset of the HyPlant acquisitions used in this work in-situ
measurements of SIF are available (see Table 1). All in-situ measure-
ments were derived using the Improved Fraunhofer Line Discrimination
Method (iFLD) (Alonso et al., 2008) from radiance point measure-
ments and solar irradiance recordings of the hyperspectral FLOX de-
vice (Fluorescence Box, JB-Hyperspectral Devices GmbH, Duesseldorf,
Germany). In the case of the FLOX measurement series matching with
CKA-2020 HyPlant acquisitions, the in-situ measurements were taken at
four different locations by four different devices. One FLOX was placed
in an agricultural oat field and three others in wheat fields. For the val-
idation, we have aggregated the time series and did not differentiate
between the different FLOX devices. The localization of those FLOX sys-
tems was improved with an exact GPS RTK measurements at each of
the devices. In the case of the in-situ measurements matching the SEL-
2018 HyPlant acquisitions, a single mobile FLOX device was used in
agricultural fields of sugar beet and wheat.

FLOX measurements falling within five min of the acquisition time of
HyPlant were considered. We selected only FLOX measurements flagged

rrrrr 1. Simulation and Emulation

Remote Sensing of Environment 334 (2026) 115203

as having high radiometric stability (< 1 % difference in solar irradiance
over the course of the measurement) in order to exclude measurements
affected by cloud and haze. Since HyPlant campaigns are only conducted
in optimal weather conditions, no measurements had to be excluded. In
the case of multiple measurements within this time window matching a
single acquisition, we averaged the FLOX iFLD SIF estimate to compare
with HyPlant derived SIF estimates. In order to account for localization
errors as well as the field of view, we compared HyPlant pixels within
a fixed 2 px radius around the measurement location, resulting in ag-
gregation radii of 1 m, 2 m and 4.6 m for acquisitions acquired at 350,
600 and 1500 m above ground level (compare Table 1). The temporal
and spatial variance resulting from the time windowing and spatial lo-
calization buffer were used as proxies for uncertainty estimates in the
performance calculations.

3. Methods

In this work, we extend the Spectral Fitting Method Neural Network
(SFMNN) setup first outlined by (Buffat et al., 2025a) with a simulation
and emulation framework to improve the representation of the atmo-
spheric radiative transfer (see flow chart in Fig. 2). SFMNN combines
neural network training and physical radiative transfer simulation to
estimate a decomposition of the at-sensor signal into constitutive quan-
tities. In a first step, the spectral data is projected to a learnable spectral
embedding space through a spectral encoder (see Fig. 3). From this com-
mon embedding space, a set of decoder heads estimates various physical
variables. During inference these variable estimates are used directly as
method products such as, e.g., the SIF product which is the estimated flu-
orescence. To train this estimation, the network passes these variables
into a fixed simulation layer representing the physical radiative transfer
to the sensor given the estimated variables. Training, thus, consists in
aligning the spectral input with the simulated radiance spectra based on
the network estimates. While in SFMNN (Buffat et al., 2025a) the sim-
ulation layer is defined as a simplified four stream model, we propose
in this contribution the use of a polynomial emulator approximating
the simulations of a radiative transfer simulation tool at high inference
speeds (see Fig. 2). In the following paragraphs we first outline the net-
work architecture and then describe the implementation and derivation
of the emulator for the purpose of network training.

3.1. Neural network architecture

We construct a neural network acting on fixed size excerpts of
HyPlant imagery (60 x 60 px) that we will refer to as patches. This patch
size has not been tuned to optimize performance considerations in this

P

Emulator with scalar Ax and Ao

Emulator with wavelength dependent AA() and Ac(X)

[Simlation - (7}

H Emulation extension }—f ———————

Simulation
dataset

2. Network Training

a

PRE
dataset

Network Training

7\ Pretrained
MPRE(t) Emsrinn

\ Finetuned
EmSFMNNN
@ ——|Network Training — msgL(t)

SEL
campaign
dataset

Fig. 2. Flowchart of the proposed EmSFMNN retrieval approach. In a first step, an emulator ¢ is derived from a large simulation data set of HyPlant radiances in the
0,-A absorption band featuring variable surface conditions and observation geometries. The emulator ¢ is extended to an emulator 7 supporting wavelength dependent
sensor shifts AA(1) and Ac(4) according to the procedure detailed in Appendix A. In a second step, a SFMNN (Buffat et al., 2025a) is trained with 7 as simulation
layer. This training is conducted in two steps where a backbone network mpygg; is trained on a large data set of HyPlant acquisitions recorded in variable conditions.
mpgg is subsequently finetuned to individual, smaller data sets recorded under similar conditions (see Table 1), for example mgg; .
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Fig. 3. Outline of the architecture and emulator integration of the SFMNN used in this work. Dimensions of the encoder e;,, the decoders for variables p,4, s, e, Fy37,

AOTss, and H,0 and the sensor characterization g are given in Table 3.

work, but set a priori. The network architecture is defined as a Multilayer
Perceptron (MLP) encoder-decoder setup as in the original SFMNN for-
mulation (Buffat et al., 2025a) and similarly to an earlier EmSFMNN
implementation for DESIS (Buffat et al., 2025b) (see Table 3). The net-
work is trained to predict all parameters p of the RTM model in Eq. (1)
that cannot be inferred from metadata or geometrical recordings, i.e.,
all parameters in Table 2 except parameters of the group Geometry.

The encoder e;, and decoder modules d, in this network are con-
structed as MLPs with residual links and have the dimensionalities given
in Table 3. The decoders are tasked with disentangling the latent space
spanned by the encoder to the physical parameters j parameterizing
the radiative transfer model underlying the simulation tool and, thus,
the emulator. We define two decoders d,: one for the reflectance and
fluorescence related parameters predicted for each pixel and one for
the atmospheric parameters predicted for each patch. These two de-
coder modules are implemented identically with except for a final spatial
mean reduction before the emulator layer in the case of the patchwise
predictor. As in SFMNN, we differentiate between pixel-wise and patch-
wise prediction based on the fact that atmospheric parameters (AOT and
H,0) have an autocorrelation that typically exceeds the physical patch
size such that a single atmospheric estimate per patch can be assumed
to lead to sufficiently precise approximations.

The estimation of sensor shifts A4 and Ac is implemented differently.
We assume that we can fit these shifts as a function of the sensor state at
acquisition time and the across-track sensor position alone without any
spectral input. This assumption is implemented in the architecture by

Table 3

Dimensionalities for different modules in the EmSFMNN architecture (see
Fig. 3). Elements in a tuple denote an architecture parameter for a single sub-
layer in a module. Reps. denotes the number of repetitions of linear layers in a
sublayer, D, denotes the dropout rate of the output of the sublayer. For a more
detailed exposition of the module architecture we refer to (Buffat et al., 2025a).

Module Parameters
Encoder e, Dim. (2e3, 2e3, 1e3, 5e2, 5e2, 1e2, 1e2, 1e2, 50)
Reps. (3,3,3,3,333,1,1)
D, (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)
Decoder d, Dim. (1e2, 50, 50, 50, 10)
Reps. (3,2,2,1)
D, (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)
Sensor charact. g Dim. (1e2, 50, 50, 50, 10)
Reps. (3,2,2,1)
D (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

P

estimating the sensor shifts only from an arbitrarily defined acquisition
identifier # € RU that represents the sensor state and the across-track
position x;. At the start of the training we randomly instantiate these
identifiers # of fixed dimensionality (U = 8) for each acquisition in
the training dataset and include them as learnable parameters in the
optimization. The MLP module g predicts shifts A4 and As for each
wavelength (A = 349) at across-track positions x; from pixelwise con-
catenations of the identifier vectors # and a positional encoding of X,
(Vaswani et al., 2023).

An important characteristic of this particular setup consists in the
physically coherent separation of inputs and the differentiation of out-
put dimensions for individual parameters. For example, all reflectance
parameters (py4, s, ¢) and the fluorescence emission amplitude F3;
are estimated for each pixel from the radiance data and geometri-
cal information vge,, but without providing the acquisition identifier u
since the decoders to those parameters by definition do not depend on
sensor characteristics or acquisition dependent changes. Similarly, at-
mospheric parameters are estimated from radiance and vy, alone, but,
differently from the surface parameters, only per patch as we assume
negligible variance of these parameters over small spatial distances.
The sensor characterization A4 and Ao on the other hand is uniquely
estimated from the acquisition identifier u for individual across-track
positions x, since it is driven by factors that are identical across single
acquisitions. Both input separation and differentiation in output dimen-
sionality constrain the network optimization architecturally with prior
knowledge of the physical processes and sensor design at play. On the
other hand, we implicitly constrain the network by enforcing physically
accurate solutions of the radiative transfer equation Eq. (1) given a par-
ticular parametrization p. Differently from the simplified four-stream
model used in SFMNN to model at-sensor radiances, the emulator 7 al-
lows for pixel-wise parametrization of the radiative transfer formulation
with known geometrical variables. This is a significant improvement
over SFMNN’s formulation as the solution space of the network can be
constrained very precisely in a pixel-wise fashion.

3.2. Simulation tool

A MODTRAN-based simulation tool is utilized in this work (Pato
et al., 2025, 2024, 2023) to simulate the HyPlant at-sensor radiance
in a spectral range covering the O,-A absorption band (740-780 nm)
according to the model
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as a function of the parameters p (as defined in Table 2) where L, is the
path radiance, Eg is the global solar irradiance on the ground, 7' is the
total transmission coefficient from surface to sensor (direct and diffuse
components, T = TdTir+TdTif), L is the top-of-canopy fluorescence emis-
sion modelled as a Gaussian with fixed variance and amplitude F,3;,
S is the spherical albedo of the atmosphere, p is the hemispherical-
directional reflectance modelled as a 2nd order polynomial with offset
p740> Slope s and curvature e, H,O denotes the columnar water vapour
content, AOTs5, the aerosol optical thickness, TA the viewing angle,
SZA the solar zenith angle, RAA the relative azimuth angle between ob-
servation and irradiance directions, hgyq the topographic height above
sea level, h,y the sensor height above ground level and A4 and Ao the
scalar shifts in the center wavelength and full width at half maximum
(FWHM). In order to be consistent with in-situ reference fluorescence
estimates, we report SIF,¢, instead of F,3; in all validation and anal-
ysis sections which we define as the functional value of the modelled
fluorescence emission at 760 nm. The simulations have been conducted
with an atmospheric model corresponding to the MODTRAN mid-latitude
summer model. Thus, we have disregarded changes in the atmospheric
pressure profile that might be caused by changing meteorology or to-
pography. Concerning further simulation configuration details adopted
in this work, we refer to prior work published by (Pato et al., 2025).
Finally, as in (Pato et al., 2023, 2024), we densely sample the parame-
ter space spanned by the parameter ranges in Table 2 and run a total of
6.3 x 10° simulations.

3.3. Emulator definition

Emulation of a hyperspectral simulator L () : R — RA from phys-
ical parameters 5 € RM (see Table 2) by an emulator ¢ is ultimately a
regression problem where we derive a function ¢ : RM — R? that repro-
duces as closely as possible the simulator L at reduced computational
cost. In practice, there is a trade-off between reducing the residual be-
tween the simulator and emulator on the one hand and reducing the
computational cost of ¢ on the other for any non-trivial simulator L,.
Since the emulator is used during the training of a neural network, we
require additionally that its gradient computation is efficient and prefer-
ably can be integrated easily into common programming frameworks
for deep learning. The polynomial emulator investigated by (Pato et al.,
2024, 2023) fulfills these requirements. It is defined as the polynomial
function of d” order

e ki kpr =
t{Blag) =Y, o\’ ... 03N a,. ®)
kexcd

over the parameters p, where d; € R” and where the set of polynomial
features is defined as

lcd={%eNM: > kisd} 3)

1<is<M

We train the emulator weights d; in a least-squares optimization on a
training subset partitioned from the total simulation data set following
(Pato et al., 2024, 2023). Throughout this work, we have chosen d = 4
since prior work (Pato et al., 2024) has shown this dimensionality to
yield sufficiently accurate emulators for SIF retrieval in the O,-A band.
Accordingly, we drop the dimension demarcation and refer to 7, as ¢ in
the rest of this contribution.

The emulator formulation in Eq. (2) is not adapted to cases where the
physical parameters p are spectrally variable. This is particularly prob-
lematic when wavelength dependent shifts AA(4) and Ac(A) need to be
represented rather than scalar shifts. In the case of scalar shifts, as im-
plemented in the original emulator definition of (Pato et al., 2024), the
simulated spectra are exposed to the same simulated sensor miscalibra-
tion in all wavelengths. To improve the accuracy of the sensor model, we
propose in this work the use of a computationally efficient reformulation
of this emulator definition Eq. (2) allowing for wavelength dependent

Remote Sensing of Environment 334 (2026) 115203

shifts AA(4) and Ac(A). These reformulated emulators will be referred to
as 7. A detailed introduction and error analysis of this reformulation are
provided in Appendices A and B.

3.4. Loss formulation

The loss used in this setup is adapted from the loss used in the SFMNN
framework (Buffat et al., 2025a). It consists of a batchwise mean squared
reconstruction error complemented by two regularizers. Given the input
radiance spectra Lyyp as measured by HyPlant and matching geometri-
cal metadata v, (flight Ay, and ground altitude hgyq, relative azimuth
RAA, tilt angle TA and solar zenith angle SZA) we train the network n
to minimize

. .2
¢ (Lyyp> Luyp) = <(LHyP — Lyyp) >/1 s ¢ ¢ + YNDVI £ NDVI> G

where Lyyp is the measured at-sensor radiance in the spectral window
W and

I:Hyp = f(}i &1, &Ga Vgeo) 5)

denotes the network prediction with predicted 5, Al and Ao. (oo )y, de-
notes the spatial and spectral mean over the patches included in a batch.
Throughout all experiments in this work we have fixed the regularizer
weights y, = 1 and yypy; = 10. These weights were established as they
have shown satisfactory results in preliminary tests on the CKA-2020
(600 m) data set (see Table 1).

The fluorescence regularization

‘= < 2 0 (Lugp(D) - LHyp(z>)2>

AEW

(6)

6p;=0, pi#Fy37

boosts the contribution of reconstruction residuals according to an SNR-
based weighting w, that accounts for the spectral distribution of typical
fluorescence emission. This weighting is derived as the Moore-Penrose
solution to a linearized retrieval problem with known reflectance and
atmospheric parameters (Buffat et al., 2025a). We thus restrict the gradi-
ent contribution of this loss term to affect only the fluorescence decoder
(i.e., network weights uniquely related to parameters p; # Fj3;, re-
flectance, atmospheric and sensor parameters, are not affected by this
term). The physiologically motivated regularizer

fnpvi = (/- S(NDVI < 7)) _ (7)

ensures that the fluorescence estimate f vanishes in pixels with very
low green vegetation, i.e., in pixels with a low Normalized Difference
Vegetation Index (NDVI). To identify these pixels, we set a threshold
7 = 0.15 on an approximate NDVI product derived from the radiance

Lygyp-
3.5. Training setup

The training of the EmSFMNN SIF predictors takes place in two
steps. We first train a backbone on the PRE HyPlant dataset (see
Table 1). This backbone is used as the initialization to all EmSFMNN
instances that are subsequently finetuned for individual datasets in a
second step. Finetuning of PRE aims at adjusting the network (1) to the
dataset-specific radiance calibration, (2) to train the acquisition specific
identifiers u that determine the estimated shifts A1 and Ac and (3) to
train in the specific parameter ranges covered differently in the vari-
ous datasets (e.g. TOPO exhibiting larger variation of h,g). During the
finetuning step, the encoder e;, is fixed and only the decoders d,, the
identifiers u and the sensor characterization g are trained. As the iden-
tifiers u are not estimated from the radiance data but rather implicitly
as a result of the architectural constraint in each acquisition, there is
no generalization property of this part of the network. Thus, in order to
get meaningful shift predictions, a finetuning is thus necessary. When
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EmSFMNN instances are applied to datasets for which they were not
finetuned, arbitrary identifiers u are selected from the set of finetuned u.
This procedure results in larger reconstruction errors than would have
been possible with a finetuning of u but it doesn’t necessarily affect the
fluorescence estimate negatively. The spectral reconstruction window
W was fixed to cover 750-770 nm.

4. Results
4.1. Reconstruction performance

We evaluate the impact of the various implemented constraints, the
optimization and the emulator extension on the reconstruction perfor-
mance. To this end, we compare the reconstruction performance of
four different EmSFMNN setups to the reconstruction performance of
an unconstrained least-squares optimization (LSQ) of the emulator ¢ to
individual pixels in a single HyPlant acquisition of the SEL data set
(see Table 4). We show an extract of the studied HyPlant acquisition
in Fig. 4. This comparison will allow (i) highlighting the effects of the
training constraints and adoption of wavelength dependent shifts on
the reconstruction performance, (ii) gauging gauge the generalization of
reconstruction performance across similar HyPlant campaigns and (iii)
assessing the impact of finetuning on the reconstruction performance. By
mcga(f) we denote an EmSFMNN predictor using the spectrally explicit
sensor miscalibration emulator 7 and finetuned on the CKA-2020 (600 m)
data set. The EmSFMNN mg; (f) and mgg; (1) are equivalently trained on
the SEL-2018 (600 m) data set and mpgg(7) denotes the common back-
bone without finetuning trained on the PRE data set. Importantly, the
HyPlant acquisition for which we evaluate the reconstruction perfor-
mance is part of the finetuning training set of mgg; (7) but not of mgy (7).
Due to the prediction of A4 and As in EmSFMNN being dependent on
learnable IDs, and the ID not having been trained for mgg,(7), we use a
single ID in CKA that we arbitrarily choose from the set of IDs trained
for CKA acquisitions.

In Fig. 5 we report the distribution of the relative reconstruction
residuals

Lip — L
6= HyP HyP ) (8)
Lyyp o

of LSQ and all EmSFMNN predictors in the acquisition. We find that the
unconstrained emulator optimization LSQ outperforms all EmSFMNN
training setups in terms of reconstruction performance. However, since
LSQ is completely unconstrained, the resulting estimates of physical pa-
rameters defining the simulation layer are not well disentangled. As a
consequence, it cannot be used for SIF retrieval, even though it provides
a useful baseline for the reconstruction error.

To first assess the impact of the feature-based setup and the training
constraints of EmSFMNN, we compare mgg; (t) to LSQ. Since the emula-
tion layer of mgg; (r) and LSQ are the same, a comparison of mgg; (f) to
the least-squares optimization LSQ isolates the impact of EmSFMNN’s
constraint formulation and its feature-based optimization. The direct
EmSFMNN equivalent mggy (f) performs significantly worse than LSQ,
presumably due to the constrained optimization. However, this de-
crease in reconstruction performance can be improved by adopting the
extended emulator formulation with bandwise shift prediction which
results in a smaller lower limit of the reconstruction residuals. Inclusion

Table 4
Definition of the EmSFMNN setups evaluated on the SEL-2018 acquisition of
Section 4.1.

Description
LSQ Unconstrained least-squares fit of emulator 7 with scalar sensor shifts
Mpgg () EmSFMNN pretrained on PRE data set with wavelength dependent 7
mggy () EmSFMNN finetuned on SEL data set with 7
mega @) EmSFMNN finetuned on CKA data set with 7
mggy (1) EmSFMNN finetuned on SEL data set with emulator ¢
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mpre(t)

SIF60nm [mW /nm /st /m?]

Fig. 4. Prediction example of a HyPlant acquisition recorded on 2018/07/26
15:30 CEST in Selhausen. Shown are a pseudo-color image (red: 682 nm, green:
700 nm, blue: 670 nm) (left), SIF estimate with mg; (t) (center) and with mpgg(t)
(right). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

LSQ
mpL()
msgr(t)

4.12% mexa(f)

mpge(f)

,_A
<

density

10 +
0.00

Fig. 5. Distribution of relative reconstruction errors ¢ (see Eq. 8) plotted logarith-
mically for different EnSFMNN set-ups as well as a least-squares optimization
(LSQ) (see Table 4) in a HyPlant acquisition recorded on 2018/07/26 15:30
CEST in Selhausen (see Fig. 4). The median values of these distributions are
reported directly in the figure with vertical lines. Mean relative reconstruc-
tion errors for mgg t and mgp () overlap in this figure. r, denotes the relative
uncertainty of the radiometric calibration.

of wavelength dependent shifts also increases the tail towards larger
residuals as can be observed from the error distribution of mgg (7).
Secondly, to measure the generalization capacity of EmSFMNN
across different data sets we compare mcga(7) to mgg (7). The resid-
ual distribution of mgg,(7) yields an e which is significantly increased
over its equivalent mg; (7) as it lacks finetuning to the HyPlant input
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data acquisition. However, its performance is close to what can be ex-
pected from the relative uncertainty of the radiometric calibration of
the at-sensor radiance r,. Since mcga(f) (that has been finetuned on
the CKA-2020 data set) is applied here on an acquisition from the SEL-
2018 data set, effects due to different yearly calibrations can affect the
reconstruction performance.

Finally, to assess the impact of finetuning it can be observed that the
relative reconstruction error of mpgg(7) is constrained in the range 3-6 %.
It is thus larger than the errors attributed purely to calibration uncer-
tainties and indicates that the backbone PRE is not able to reconstruct
the model at-sensor radiance of arbitrary HyPlant acquisitions from its
learned feature representation without prior finetuning.

4.2. Validation with FLOX data

We validate EmSFMNN SIF predictions with top-of-canopy iFLD SIF
estimates derived from radiance data recorded by FLOX devices. To be
consistent with the FLOX iFLD retrieval yielding our ground-truth, we
use the Gaussian fluorescence model assumption implemented in the
simulations to calculate SIF,4,. Five measurement time series are at our
disposal acquired during HyPlant overflights in field campaigns in the
years 2018-2021 (see Fig. 6). To support our comparison, we also re-
port the validation results for three baseline methods that were adapted
to hyperspectral HyPlant imagery (iFLD (Wieneke et al., 2016; Damm
et al., 2014), SFM (Cogliati et al., 2019, 2015) and SFMNN (Buffat et al.,
2025a)). Additionally, we show the impact of the emulator formula-
tion and the finetuning on the performance of the standard training
setup denoted by EmSFMNN(?) in Table 5. To this end, we report (i)
results for the EnSFMNN setup using the polynomial interpolation with-
out band-wise sensor characterization, denoted as EmSFMNN(r), and (ii)
the performance of the coarsely pretrained SIF predictor, denoted as PRE
(see Table 5).

We find that the EmSFMNN(?) predictors finetuned to individual data
sets generally are among the best SIF retrieval methods in terms of the
mean absolute error with respect to FLOX estimates (MAE) and normal-
ized MAE (nMAE) (defined as mean relative absolute errors as in Eq. 8).
EmSFMNN(?) yields MAE scores consistently smaller than 0.4 mW nm ~!
sr~1 m~2 whereas stronger variation in MAE can be found in the case
of the iFLD, SFM and SFMNN SIF predictions. We notably find a reduced
overestimating bias of EmSFMNN as compared to SFMNN in Fig. 6 and
a higher accuracy than in SFM and iFLD predictions.

Both the use of 7 instead of  and the finetuning considerably de-
crease the MAE. This can be concluded from the improved performance
of EmSFMNN(7) over EmSFMNN(¢) and PRE. These two aspects have
been introduced to improve the model representation by (i) a more ac-
curate simulation layer in the reconstruction loss and (ii) a more precise
fitting of the spectral data by specializing the network weights to a se-
lection of HyPlant lines. While the use of the non-specialized pretrained
EmSFMNN model PRE leads to validation results comparable to the base-
line methods, it is necessary to make use of a finetuning step to improve
over the baseline methods iFLD, SFM and SFMNN.

In Table 5 we equally report the Pearson correlation scores r and the
Explained Variance Score R?. A consistent cross-validation assessment
based on r and R? is, however, not possible throughout all validation
data sets due to strongly variable performance under these two metrics.
Due to the small number of validation data points these performance
metrics are subject to large uncertainties. A reduced performance of
EmSFMNN (7) in terms of r with respect to SFMNN is, however, ob-
servable in all data sets where such a comparison can be made. We
hypothesize that this may be due to the stricter modelling approach
of EmSFMNN resulting in a higher sensitivity to sensor noise. Finally,
we point out that we find a consistent prediction underperformance in
the WST-2019 dataset across all tested SIF retrieval algorithms in terms
of r. In the cases exhibiting the highest accuracy scores (EmSFMNN(7)
and SFMNN) a negative and a non-significant correlation score r can
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be found. While we are unable to establish the reason for this be-
haviour, we hypothesize that it is partly explained by the overall
variation in SIF across the WST-2019 dataset (~1.75 + 0.25 mW nm !
sr~1 m~2) which is lower than the average estimated uncertainty of
the analysed SIF estimators. In this case small errors have a large im-
pact on the correlation. Secondly, dataset-specific effects leading to
SIF dynamic prediction failure might be at play in all cases except
SFM.

4.3. Topography

The emulator was derived from simulations covering an hg,q range
of 0-0.76 km and of h,, 0.2-2.86 km. This allows the application
of EmSFMNN predictors in acquisitions with large height variation
where both the surface height hy,4 and flight height above ground level
hqg change significantly over the course of a single datatake. To test
the reconstruction performance of EmSFMNN predictors under these
circumstances we examine the TOPO data set consisting of HyPlant ac-
quisitions with strong topographic variation and a nominal flight height
of 600 m (see Table 1). We apply (i) the EmSFMNN predictor fine-
tuned to the CKA-2020 (600 m) data set (denoted as mcgs) and (ii)
an EmSFMNN finetuned to the TOPO data set (mpgpg). The finetun-
ing of the mrgpg and mcg, was performed on the TOPO data set as
described above (cf. Table 1) and only differed in the finetuning data
set. Both predictors derive from an EmSFMNN backbone trained on the
PRE data set which includes the data contained in TOPO. By examining
on TOPO with both mcg, and mpgpg We can evaluate the importance
of topography related distribution differences between finetuning data
sets.

In Fig. 7(a) and (b) we summarize the residual statistics of mcg, and
mropo as a function of the flight height &, in the full prediction spec-
tral window W (750-770 nm) as well as in a narrow spectral window
Wo, a in the O,-A absorption band (759.5-761 nm). mcg, outperforms
the finetuned mygpg in W exhibiting a residual distribution with fewer
outliers. Notably, mcg, outperforms mpopg including in h,g ranges that
are not covered by the CKA-2020 (600 m) finetuning data set. The fine-
tuning to the validation data set TOPO yields, however, to an improved
mropo Performance in the O,-A band with myqpg exhibiting an improved
reconstruction performance overall. The strong reconstruction residual
outliers of mpopg are consequently contained in spectral regions outside
the O,-A band as can be understood from the fact that its performance
on Wy, 4 is less affected by it.

While we are able to assess the reconstruction performance of myopg
and mcg,, we cannot evaluate the SIF predictions in the TOPO dataset
due to lacking in-situ data. Therefore, we test whether in addition to
the reconstruction performance the SIF prediction and reflectance esti-
mation are independent of the hagl variation. Fig. 8(a) shows that the
SIF predictions of mropg and mcg, have a constant mean over most
of the covered height range. This is to be expected in the case of a
homogeneous distribution of fluorescence emitting surfaces. The de-
coupling of h,, from the SIF prediction is only invalid in the range
hag < 0.5 km where both mpgpp and mcga have a larger mean SIF
prediction than in the rest of the height range. There are however
significantly less HyPlant pixels falling in this range such that the
homogeneity assumption is weakened due to a decreased statistical
relevance.

In Fig. 9 we show an exemplary HyPlant acquisition that highlights
the independence of the achieved SIF prediction and the reconstruction
performance from h,g. Both SIF and the fractional residual AL/ Lyyp are
unaffected by the topographic variation along-track over the hill slope
in the image center. The SIF predictions differ only slightly in mpqpg and
mcga due to differences in the finetuning training data set.

Concluding, we can observe that the influence /,, on EmSFMNN’s
reconstruction performance, SIF and reflectance prediction is small. The
variation of reconstruction errors, SIF and reflectance of both mrqpg and
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Fig. 6. FLOX-derived iFLD SIF vs. HyPlant-derived EmSFMNN, SFMNN, SFM and iFLD SIF in the five in-situ validation data sets (see Table 1). The dashed line and
the red floating labels report the linear relationship between airborne and in-situ FLOX iFLD estimates. In the CKA-2020 data sets FLOX measurements from different
devices are reported separately. The x-axes of the subplots are shared and labelled at the bottom. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

This indicates that EnSFMNN can compensate for the variability in the
atmospheric transfer with the specific choice of RTM emulation adopted
in this contribution.

mcga do not vary systematically with hug. It could be observed that
the choice of the training dataset for finetuning had a larger effect on
EmSFMNN’s reconstruction performance than the topographic variation.
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Table 5

Comparative validation of SFM, iFLD, SFMNN and EmSFMNN retrieval methods. We report the mean
absolute error (MAE) of the EmSFMNN predictions with respect to FLOX measurements, the Pearson
correlation r, the Explained Variance Score R?, the normalized MAE (nMAE) defined as in Eq. (8) and
the number of validation measurements N. In cases where the p-value of r is larger than 5 % we do
not report r and write — instead. Similarly, in cases where R> < 0 we do not report R? and write —.

r R? MAE nMAE N
[mW nm~' sr! m2]
SEL-2018 (600 m) EmSFMNN (7) 0.91 0.55 0.26 + 0.09 0.30 10
EmSFMNN (1) 0.86 0.74 0.46 + 0.05 0.41 10
PRE 0.78 0.57 0.47 + 0.06 0.48 10
SFMNN 0.98 - 0.68 + 0.07 0.59 10
SFM 0.96 - 0.51 + 0.07 0.54 10
iFLD 0.64 0.10 0.88 + 0.00 0.69 11
WST-2019 (1500 m) EmSFMNN (7) —-0.54 - 0.29 + 0.05 0.16 15
EmSFMNN (7) -0.73 - 1.48 + 0.05 0.88 15
PRE —-0.78 - 0.41 + 0.04 0.22 15
SFMNN - - 0.22 + 0.10 0.12 15
SFM - - 0.53 + 0.08 0.30 15
iFLD - - 0.80 +0.10 0.45 15
CKA-2020 (600 m) EmSFMNN (7) 0.65 0.02 0.35 + 0.05 0.54 16
EmSFMNN (1) 0.69 0.18 0.47 + 0.05 0.56 16
PRE 0.67 - 0.39 + 0.06 0.48 16
SFMNN 0.69 0.34 0.33 + 0.06 0.99 16
SFM 0.72 - 0.48 + 0.06 0.53 16
iFLD 0.64 - 0.42 + 0.09 0.70 16
CKA-2020 (350 m) EmSFMNN (7)) 0.74 0.04 0.28 + 0.04 0.22 34
EmSFMNN (1) 0.81 0.12 0.35 + 0.04 0.27 34
PRE 0.80 - 0.33 + 0.04 0.25 34
SFMNN 0.84 - 0.34 + 0.04 0.24 34
SFM 0.87 - 0.35 + 0.04 0.27 34
iFLD 0.58 0.05 0.28 + 0.05 0.20 34
CKA-2021 (350 m) EmSFMNN (7) - 0.19 0.38 + 0.09 0.17 6
EmSFMNN (1) - 0.16 1.07 £ 0.12 0.49 6
PRE - 0.30 0.70 + 0.09 0.32 6
SFMNN - - 0.65 + 0.10 0.29 6
SFM - - 0.50 + 0.08 0.23 6
iFLD 0.85 0.71 0.12 + 0.18 0.18 6
(a) (b)
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Fig. 7. Top row: Marginalized distribution of relative reconstruction residuals of mcg, in red and mgpg in blue in the whole fitted spectral window W (a) and in
the spectral window W, , in the O,-A band (b). Bottom left: Relative reconstruction residuals of mcy, (red) and mpqpq (blue) stratified by the sensor height above
ground h,g in W (a) and Wy, , (b). Red and blue lines denote the means, dark areas denote the 25-75 percentile ranges, light areas denote the 10-90 percentile
ranges. In yellow we highlight the range of h,, covered by the CKA-2020 data set on which mgy, was finetuned. Bottom right: Logarithmic empirical histogram of
hyg of CKA-2020 in yellow and TOPO in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 8. Top row: Marginalized distribution of reflectance offset parameter p (a) and fluorescence emission amplitude F,3, as predicted by mcg, in red and mgpg in
blue. Bottom left: reflectance offset parameter p (a) and fluorescence emission amplitude F3, (b) stratified by the sensor height above ground h,, as predicted by
mcga in red and by mrgpe in blue. Red and blue lines denote the means, dark areas denote the 25-75 percentile ranges, light areas denote the 10-90 percentile ranges.
In yellow we highlight the range of h,g covered by the CKA-2020 data set on which mcy, was finetuned. Bottom right: Logarithmic empirical histogram of A,q of
CKA-2020 in yellow and TOPO in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Top row: Shown are the SIF prediction of TOPO(1) and CKA(1) along the ground surface altitude Ag,q derived from a matching Digital Elevation Map (DEM).
Lower rows: shown are a false color image of the HyPlant at-sensor radiance, the pixelwise SIF,, .., prediction of TOPO (given in mW nm~! sr=! m~2) and the
relative reconstruction error of TOPO in the spectral window W in a subset of the HyPlant acquisition displayed in the top row. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

5. Discussion
5.1. Simulation and emulator design and limitations

In this work the integrated use of a polynomial emulator and self-
supervised neural network training could be shown to yield both fast and
accurate estimation of SIF at 760 nm. Two design choices of the simula-
tion model are of particular relevance to the discussion of EmSFMNN’s
performance.

Firstly, the model underlying the simulation tool and the emula-
tor was set up to exclude cross-correlations between input parameters.
While such cross-correlations may be learnt in EmSFMNN’s training
setup, we do not implicitly enforce these by, e.g., making use of a
physiologically plausible model such as SCOPE (Tol et al., 2009a).
Such relationships would have confounded EmSFMNN’s capacity to fit
the at-sensor radiance signal purely on the basis of physical princi-
ples. As an example, it is well known that both the reflectance in the
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spectral region of photosynthetically active radiation (PAR) and the
total fluorescence emission amplitude F;;; are strongly correlated in
green vegetation due to a common dependency on leaf chlorophyll con-
centration (Verrelst et al., 2015). Reconstructed SIF products involving
spaceborne reflectance products such as the MODIS-based RSIF (Gentine
and Alemohammad, 2018) and RTSIF (Chen et al., 2022), reconstructing
the TROPOMI SIF product, make use of this relationship. Detailed studies
with field data could also establish cross-correlations in reflectance-
based features and top-of-canopy SIF derived from airborne platforms
resulting from structural effects (Yang and Van Der Tol, 2018; Yang
et al.,, 2019) and biochemical processes related to non-photochemical
quenching (Pinto et al., 2020). However, such dependencies, if incor-
porated a-priori in the predictor modelling assumptions, are prone to
lead to model bias and, importantly, may well induce larger gradi-
ents in the self-supervised loss than the small at-sensor fluorescence
signal. As a consequence, the influence of such fixed correlations on
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the feature-based optimization and ultimately on the SIF estimate
may trump the physical and causal spectral reconstruction approach
leveraged in EmSFMNN.

Secondly, this contribution has focused on SIF retrieval in a nar-
row spectral range. The spectral range around the O,-A absorption
band of the simulation database has allowed us to (1) parameterize the
reflectance and fluorescence with simple functions (second-order poly-
nomial, Gaussian) and (2) use a polynomial model to approximate the
simulation database. The polynomial form chosen for the emulator was
advantageous to the EmSFMNN setup as it allowed an easy integration
of the emulator in the neural network architecture: both forward pass
and backward gradient computation were achieved by implementing the
emulator as a fixed linear layer.

The use of the plain polynomial emulator ¢ (Pato et al., 2023, 2024)
for EmSFMNN has led to subpar performance with respect to in-situ
FLOX measurements. While the lack of spectrally explicit sensor char-
acterization did not lead necessarily to decreased performance in terms
of spectral reconstruction residuals, the emulator model’s incomplete-
ness has caused systematic errors in the signal decomposition. As a
consequence, we have implemented an emulator capable of simulat-
ing HyPlant at-sensor radiances with bandwise spectral shifts with an
efficient approximation 7. This approximation can be shown to yield ac-
ceptable relative errors peaking at ~3.5 % with respect to the exact, but
computationally demanding emulator solution (see Appendix B). The
error incurred by the approximation in the O,-A absorption band may,
however, still be significant in terms of reconstruction accuracy con-
sidering that the mean fluorescence emission at 760 nm in HyPlant
acquisition amounts also to < 3 % of the mean at-sensor signal. The
validation of the SIF prediction of EmSFMNN models integrating this
approximate emulator 7 proved sufficient to outperform all baseline
methods in terms of accuracy.

While we have shown the application of EnSFMNN to HyPlant FLUO
data in this contribution, the EmSFMNN approach to retrieve SIF can
be implemented for data from different imaging sensors (e.g., in DESIS
(Buffat et al., 2025b)) and could be extended to other spectral regions
(e.g., the O,-B band). Since the network architecture interacts with the
data in the loss only through the interface of the emulator representing
the physical constraints of the retrieval problem, such a change in the
data modality would simply necessitate adapting the emulator. In par-
ticular, the modelling of the sensor in the simulation tool (Pato et al.,
2025) and an extension of the reflectance and fluorescence parametric
functions to the new spectral range would be required. Further re-
search in emulator representations of simulated hyperspectral at-sensor
radiance including bandwise sensor characterization is thus warranted.
While the simple polynomial approach adopted here was suitable for
the spectral range and simulation model that had been fixed for the
EmSFMNN O,-A SIF retrieval problem on HyPlant data, the integra-
tion of different emulator architectures (Verrelst et al., 2016, 2017;
Bue et al., 2019) may become necessary for retrieval in different data
modalities.

Finally, an extension of EmSFMNN to a generalized set of hyper-
spectral imaging sensors would equally require analysis of EnSFMNN’s
prediction performance under variable sensor noise distributions. In
this work, the simulation model underlying the emulation of the atmo-
spheric radiative transfer did not include sensor- or observation-specific
noise distributions. An overall increased uniform noise level (decrease
of the sensors signal-to-noise ratio) would decrease the quality of the
gradients deduced from the reconstruction loss and hence would af-
fect EnSFMNN’s prediction performance negatively. More importantly,
EmSFMNN’s training setup would be particularly impacted by spectrally
non-uniform noise patterns as these would result in biased estimates of
the model parameters in the presented training setup.

5.2. Prediction of atmospheric variables

We have tested the quality of EnSFMNN’s signal decomposition with
respect to its reconstruction performance and the agreement of its SIF
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prediction with in-situ measurements. We could not validate the ac-
curacy of the predicted atmospheric variables (water vapour content
H,0 and aerosol optical thickness AOTsg,) with direct measurements.
The prediction of these variables is understood to be very challeng-
ing in the setting adopted in the presented retrieval method since (i)
the sensitivity of the at-sensor radiance to water vapour and AOTss5 in
the fitting spectral window (750-770 nm) is small (Pato et al., 2025),
(ii) the variation of both parameters in the training data is expected
to be small due to similar meteorological conditions during HyPlant
campaigns. Furthermore, there may be remaining representation in-
sufficiencies of the emulator ¢ that can result in EmSFMNN predictors
leveraging the degrees of freedom in these parameters to adjust the at-
mospheric estimate to the observational data. In particular, we highlight
that the at-sensor radiance simulations all have used a standardized at-
mospheric pressure profile (MODTRAN mid-latitude summer) while we
have not adapted the emulator to the meteorological conditions at ac-
quisition time. Thus, while H,O and AOTss, were included explicitly in
the simulations and EmSFMNN addresses these parameters with a spatial
constraint, accurate retrieval of these parameters cannot be expected.

We show in Fig. 10, however, that the distributions of AOTsg, esti-
mates of single HyPlant acquisitions are approximately consistent with
AOTs5, measurements of a CIMEL instrument located at the JOYCE
AERONET station (FZJ-JOYCE, 2024) nearby the geographical center
of HyPlant acquisitions in the SEL-2018 data set (~5 km). We gathered
CIMEL for this analysis CIMEL AOTss, measurements with a maximum
time difference to the HyPlant acquisition time of 20 min. In partic-
ular, we find a strong decrease in AOTsg, on 2018/06/27 which is
reflected in EmSFMNN estimates as well. Furthermore, MODIS Terra and
Aqua AOTg5, estimates from data with a maximum two-hour time dif-
ference to the HyPlant acquisition are similar to EnSFMNN. The MODIS
estimates exhibit large uncertainties, however, such that they must
be considered to gauge only very roughly the accuracy of EmSFMNN
AOTss,.

A more detailed study of parameters pertaining to the atmospheric
composition at acquisition time would be of relevance for EmSFMNN
if it were to be applied to more susceptible spectral regions covered by
full-spectrum retrieval. Furthermore, more extensive analysis could es-
tablish the performance benefit of including atmospheric estimates from
different sensors as in (Buffat et al., 2025b). Since such a procedure is
planned with the FLEX/Sentinel-3 tandem orbit configuration (Drusch
et al., 2017), such analysis is especially relevant for further work on the
application of EmSFMNN on FLEX data.

5.3. Feature generalization of EnSFMNN

The validation analyses have shown good performance of EmSFMNN
models on data for which the models were not finetuned. In Section 4.1
we could show that mcg, (7) applied to a HyPlant acquisition from SEL-
2018 yielded a mean reconstruction performance of ¢ < 3.15 % as
compared to the result of the finetuned mgg; (7) of ¢ < 2.31 %. The SEL-
2018 data set is similar to CKA-2020 on which mcga (F) was finetuned.
Both data sets cover predominantly agricultural fields and exhibit only a
small fraction of forested areas such that mcg, () and mgg (7) are trained
with a similar spectral surface composition. Furthermore, the h,g and
hgnq ranges in both data sets are overlapping. However, the data sets
were acquired in different years resulting in varying radiometric sensor
calibrations associated with a mean uncertainty of 3 %. These results
indicate that EmSFMNN generalizes well across HyPlant data sets with
large similarities. In addition, Section 4.2 could establish that the non-
finetuned backbone predictor PRE could estimate SIF outperforming the
SFM, iFLD and SFMNN baselines in some validation data sets, high-
lighting the impact of strong feature generalization on EmSFMNN SIF
estimates.

Furthermore, generalization capability of EmSFMNN across topo-
graphic changes could be established in Section 4.3. We could show
that mcga(f), which was finetuned on data exhibiting only small
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Fig. 10. Comparison of AOTs5, estimates. Black: distribution of EnSFMNN AOTsg, estimates in single HyPlant acquisitions, box width show 25-75 % percentiles and
whiskers show 5—95 % percentiles, the median is reported in orange, Blue: CIMEL measurements of the JOYCE AERONET station (FZJ-JOYCE, 2024) located at ~5
km from the SEL-2018 HyPlant acquisitions (left), box width shows the standard deviation of all measurements recorded within 20 min of the HyPlant acquisition
time, Green: Deep Blue AOTsg, products of MODIS Terra (MODIS Atmosphere Science Team, 2017a) and Aqua (MODIS Atmosphere Science Team, 2017b) at 10 km
resolution, box width shows the standard deviation of available Terra and Aqua products within two hours of the HyPlant acquisition time and the whiskers represent
the mean of the provided uncertainty of the estimates within a 30 km window around the location of the CKA-2020 estimates. Red: maximum AOTs5, covered in
simulation database. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

topographic variation, had an improved reconstruction performance
over an EmSFMNN instance that was finetuned on the full topographic
range present in TOPO. We interpret this finding such that the learned
feature space successfully disentangles features that are unrelated to the
topographic change and the associated optical path length differences
(i.e. the reflectance and SIF emission). This in turn is corroborated by
the observation that both the statistical distribution of the predicted SIF
emission and of the reflectance are constant across the full topographic
range.

The possibility to base the inference of SIF in new data on a sin-
gle generalized SIF retrieval model is an advantage of the feature based
optimization of EnSFMNN over other physical SIF retrieval methods for
which a repeated pixelwise or campaign-wise optimization has to be con-
ducted. While we have not conducted validation studies on completely
new data sources, that were not included in the pretraining or finetun-
ing training data, we could show that the EmSFMNN could be finetuned
successfully to a range of HyPlant data sets without complete retrain-
ing. If the importance of finetuning on the SIF prediction performance
could be better quantified and reduced, the emulator based SIF retrieval
method developed here could therefore prove to be a useful contribu-
tion to efficient SIF retrieval method for hyperspectral high-throughput
imaging sensors where inference speed is critical.

6. Conclusion

In this work, we have applied EmSFMNN to HyPlant FLUO data.
This novel emulation-based SIF retrieval method was first presented by
Buffat et al. (Buffat et al., 2025b) on DESIS acquisitions. EmSFMNN
utilizes feature-based optimization and hyperspectral RTM emulation
to disentangle the fluorescence signal from the at-sensor radiance. We
have proposed an extension to the originally purely polynomial model
used for DESIS to represent spectrally explicit CW and FWHM shifts in
HyPlant computationally efficiently. This has allowed for the training
of EmSFMNN on a significant fraction of the total available HyPlant
acquisitions.

The direct SIF validation with in-situ SIF estimates derived from
FLOX measurements has shown that the accuracy of finetuned
EmSFMNN outperforms both SFMNN and traditional baseline meth-
ods (SFM, iFLD). Importantly, we could also show that a pretrained
backbone EmSFMNN predictor generalized well across the considered
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HyPlant campaigns such that improved EmSFMNN SIF retrievals could
be achieved at a smaller computational cost than traditional pixel-wise
optimization. The computational efficiency of this approach is due to
the feature-based nature of EmSFMNN that allows a single model to be
used for inference without prior finetuning.

Furthermore, in an analysis with HyPlant acquisition with strong
topographic variability, we demonstrated that the setup allows for a gen-
eralization of the application domain of SIF retrieval. The possibility to
constrain the retrieval by exact topography and geometrical information
has allowed the application of EmSFMNN to HyPlant acquisitions with
strong topographic variation where prior retrieval algorithms could not
be applied in a straightforward fashion.

Finally, we have presented a small comparison of EnSFMNN pre-
dicted AOTs5, with high-fidelity CIMEL AOTs5, measurements in a
single campaign data set consisting of 13 acquisitions giving first in-
sights into the accuracy of the atmospheric characterization estimated
by EmSFMNN. We found a consistent variation of predicted AOTs5s5, with
the measurements which supports the hypothesis that the disentangling
of reflectance, fluorescence and atmospheric components as predicted
by EmSFMNN is trustworthy. Further work is, however, necessary to
assess EmSFMNN’s performance in predicting secondary atmospheric
components under general observation conditions.

As HyPlant FLUO is the airborne demonstrator for the spaceborne
FLORIS sensor, that will be operated onboard ESA’s Earth Explorer
mission, this work is relevant for further research in computationally
efficient SIF retrieval algorithms for data acquired by FLORIS. While
(Buffat et al., 2025b) have shown how EmSFMNN could be applied to
radiance data acquired on a spaceborne platform, in this work we have
focused specifically on the requirements of HyPlant FLUO, a sensor com-
parable to FLORIS. The encouraging results in terms of precision in both
DESIS and HyPlant FLUO suggest that EmSFMNN may be successfully
applied to FLORIS data as well.
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Appendix A. Emulation of a wavelength dependent sensor model

The simulation database is created for scalar shifts A4 and Ao, i.e.,
simulated spectra s(5) € R* will experience the same simulated sensor
miscalibration in all wavelengths A € A. In a realistic sensor model,
CW and FWHM shifts are, however, functions of the wavelength such
that we ought to find an emulator with dependency on shifts A4 € RA
and Ao € R? in addition to the other input parameters 5. We assume
that there is no cross dependency of the shifts either in the measured
at-sensor radiance L or the simulator L, i.e.,

Vidk: dL; _
! T

d(L,),(5. A4 Ao) ~

=0, v e (A4, As). A1)

duy
In this case a naive approach to extend the emulator could be achieved
by rewriting

¢ (,‘3’, v A}) - (rdu,. 15, Ao, A/l,-))o (A.2)

s
<i<A

where 7, is defined in Eq. (2). Since the simulation database covers a
large number of spectral bands (A = 349) such an approach results in a
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significant increase in computation time for a single spectrum; the emu-
lator would need to be run A times for a single emulated spectrum. We
therefore adopt an approximation. We derive a multiplicative correction
factor

b(A; | A4, Ao) = E [w (/1,. 15, A4, Aa,-)] (A.3)

Ta (Ai | 5, AAhAGi)

=K =
ty (4415, A4, = A, = 0)

(A4)

where the expectation is calculated by sampling randomly over the pa-
rameter distribution in the input parameter space. As we will show
below, the variance over this distribution is very small, such that we
can write

iy (415 82,80 ) ~ b4, | 84, 80) -1, (415, A4 = A0, =0). (A5)
The fitting of b has only to be performed once prior to training. Thus,
only the inference computation time is relevant and the time for fit-
ting b can be neglected. With b being sufficiently simple we therefore
can reduce the relevant computation cost by adopting 7, over 12‘ (see
Table B.6).

Table B.6

Prediction time measurements for the original emulator ,, the
original emulator applied in a bandwise fashion tj: and the em-
ulator approximation 7,. In the case of ¢, only scalar sensor
shifts were computed. The values represent the average of 20
time measurements on a single GPU (NVIDIA Quadro RTX 8000)
predicting a batch of 10* samples.

A
1, 7} i

Prediction time per sample 0.28 us 55.40 us 1.93 us

Appendix B. Accuracy of the extended emulation

We have trained a 4™ order polynomial emulator ¢ on simulation
databases covering the parameter ranges given in Table 2 as in (Pato
et al., 2024). In order to allow for efficient training we then have im-
plemented the emulator extension for wavelength dependent shifts 7 (as
defined in Appendix A) based on the polynomial emulator 7, which acts
only on scalar shifts as outlined in Section 3.3. To this end, we have
computed the multiplicative factor m as the expectation in Eq. (A.3). To
compute the distribution, we uniformly sampled a large number of pa-
rameter combinations 7 and sensor shifts A4 and Ao in the input space
spanned by the individual parameter ranges.

We found the standard deviations of w to be bounded by 3.5 % under
CW shifts and 0.06 % by FHWM shifts which we regarded as sufficiently
small to approximate it by its mean m (see Fig. A.11). Subsequently, we
fitted a 5th order polynomial to the derived m to gain a multiplicative
factor defined on the whole input parameter space discarding the need
for interpolation during prediction. The dimension of this polynomial
was required to be just large enough to fit m well. The use of 7, leads to
a significant time reduction as compared to ti‘ (cf. Table B.6).

In order to evaluate the accuracy of 7 we compared it to ti\ on a
uniformly sampled test set. While ti‘ takes significantly longer to com-
pute, its accuracy with respect to the RTM is as high as the emulator
itself since it essentially computes the emulator in a bandwise fashion.
In Fig. B.12 we show that the mean relative error incurred by using the
approximation 7, is smaller than 1 %. However, the 95 % percentile
reaches a relative error of 3.5 % inside the O,-A band. We equally show
the effect of neglecting bandwise shifts by comparing emulations of 12‘
with 7, emulations leveraging only scalar shifts. The same parameters j
were used for ti\ and 7, with only A4 and Ao set to a fixed scalar value
for t,. The relative errors can reach up to 10-20 % in the O,-A band
highlighting the importance of bandwise sensor characterization.
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Fig. A.11. Multiplicative unitless factor w of 7, under variable sensor shifts (A1 and As) in three selected wavelengths. In blue is plotted the standard deviation of
w (as defined in Eq. (A.3)) over the distribution of randomly sampled emulator parameter configurations p. The fitted mean used as multiplicative correction b (see
Eq. (A.3)) is plotted in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. B.12. Logarithmically displayed relative errors of the approximate emulator 7, (green/yellow) and scalar shift emulator  (pink) with respect to the accurate
emulator. In the case of 7, we set AA = Ao = 0. The 25—75 % percentile range is plotted in dark green, the 5 %-95 % percentile range in light green, the mean in
yellow. Pink denotes the 25%-75 % percentile range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Appendix C. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.rse.2025.115203.

Data availability

Data will be made available on request.
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